These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11480984)

  • 1. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters.
    McIntosh CM; Esposito EA; Boal AK; Simard JM; Martin CT; Rotello VM
    J Am Chem Soc; 2001 Aug; 123(31):7626-9. PubMed ID: 11480984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione.
    Han G; Chari NS; Verma A; Hong R; Martin CT; Rotello VM
    Bioconjug Chem; 2005; 16(6):1356-9. PubMed ID: 16287230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticle-mediated transfection of mammalian cells.
    Sandhu KK; McIntosh CM; Simard JM; Smith SW; Rotello VM
    Bioconjug Chem; 2002; 13(1):3-6. PubMed ID: 11792172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription inhibition using oligonucleotide-modified gold nanoparticles.
    Agbasi-Porter C; Ryman-Rasmussen J; Franzen S; Feldheim D
    Bioconjug Chem; 2006; 17(5):1178-83. PubMed ID: 16984126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of T7 RNA polymerase: transcription initiation and transition from initiation to elongation are inhibited by T7 lysozyme via a ternary complex with RNA polymerase and promoter DNA.
    Kumar A; Patel SS
    Biochemistry; 1997 Nov; 36(45):13954-62. PubMed ID: 9374875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Design of transcription inhibitors on the basis of n-arylamides of 9-methyl- and 9-methoxyphenazine-1-carboxylic acids].
    Pal'chykovs'ka LH; Vasyl'chenko OV; Platonov MO; Kostina VH; Lysenko NA; Aleksieieva IV; Hovorun DM; Shved AD
    Ukr Biokhim Zh (1999); 2011; 83(2):65-73. PubMed ID: 21851048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition and stabilization of peptide alpha-helices using templatable nanoparticle receptors.
    Verma A; Nakade H; Simard JM; Rotello VM
    J Am Chem Soc; 2004 Sep; 126(35):10806-7. PubMed ID: 15339141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic gold microparticles for biolistic delivery of nucleic acids.
    Svarovsky S; Borovkov A; Sykes K
    Biotechniques; 2008 Nov; 45(5):535-40. PubMed ID: 19007338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of small ligand-protein interactions by using T7 RNA polymerase with DNA-modified ligand.
    Mie M; Sugita R; Endoh T; Kobatake E
    Anal Biochem; 2010 Oct; 405(1):109-13. PubMed ID: 20553866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible regulation of chymotrypsin activity using negatively charged gold nanoparticles featuring malonic acid termini.
    Simard JM; Szymanski B; Rotello VM
    Med Chem; 2005 Mar; 1(2):153-7. PubMed ID: 16787310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial control of recognition and redox processes with multivalent nanoparticle hosts.
    Boal AK; Rotello VM
    J Am Chem Soc; 2002 May; 124(18):5019-24. PubMed ID: 11982366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles.
    Perumal S; Hofmann A; Scholz N; Rühl E; Graf C
    Langmuir; 2011 Apr; 27(8):4456-64. PubMed ID: 21413796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of elongation complexes for T7 RNA polymerase].
    Limanskaia OIu; Limanskiĭ AP
    Biofizika; 2012; 57(4):573-88. PubMed ID: 23035523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T7 RNA polymerase: conformation, functional groups, and promotor binding.
    Oakley JL; Pascale JA; Coleman JE
    Biochemistry; 1975 Oct; 14(21):4684-91. PubMed ID: 1101955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A method of HPRE synthesis via transcription by T7 RNA polymerase in vitro].
    Huang Y; Guo JJ; Zhang J; Chen WX; Huang AL
    Zhonghua Gan Zang Bing Za Zhi; 2005 Nov; 13(11):808-10. PubMed ID: 16313721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ancillary ligands on the topoisomerases II and transcription inhibition activity of polypyridyl ruthenium(II) complexes.
    Chen X; Gao F; Zhou ZX; Yang WY; Guo LT; Ji LN
    J Inorg Biochem; 2010 May; 104(5):576-82. PubMed ID: 20167375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of RNA and DNA polymerases by the product of the reaction of selenite with sulfhydryl compounds.
    Frenkel GD; Walcott A; Middleton C
    Mol Pharmacol; 1987 Jan; 31(1):112-6. PubMed ID: 3807888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-regulated Inhibition of T7 RNA polymerase via establishment of disulfide linkages by substituted Dppz dirhodium(II,II) complexes.
    Aguirre JD; Chifotides HT; Angeles-Boza AM; Chouai A; Turro C; Dunbar KR
    Inorg Chem; 2009 May; 48(10):4435-44. PubMed ID: 19368370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.