BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11481425)

  • 41. The mismatch repair endonuclease MutLα tethers duplex regions of DNA together and relieves DNA torsional tension.
    Witte SJ; Rosa IM; Collingwood BW; Piscitelli JM; Manhart CM
    Nucleic Acids Res; 2023 Apr; 51(6):2725-2739. PubMed ID: 36840719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.
    Lee SD; Surtees JA; Alani E
    J Mol Biol; 2007 Feb; 366(1):53-66. PubMed ID: 17157869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional residues on the surface of the N-terminal domain of yeast Pms1.
    Arana ME; Holmes SF; Fortune JM; Moon AF; Pedersen LC; Kunkel TA
    DNA Repair (Amst); 2010 Apr; 9(4):448-57. PubMed ID: 20138591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes.
    Nicholson A; Hendrix M; Jinks-Robertson S; Crouse GF
    Genetics; 2000 Jan; 154(1):133-46. PubMed ID: 10628975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast.
    Harfe BD; Minesinger BK; Jinks-Robertson S
    Curr Biol; 2000 Feb; 10(3):145-8. PubMed ID: 10679328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accumulation of recessive lethal mutations in Saccharomyces cerevisiae mlh1 mismatch repair mutants is not associated with gross chromosomal rearrangements.
    Heck JA; Gresham D; Botstein D; Alani E
    Genetics; 2006 Sep; 174(1):519-23. PubMed ID: 16816424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex.
    Kim Y; Furman CM; Manhart CM; Alani E; Finkelstein IJ
    Nucleic Acids Res; 2019 Feb; 47(4):1823-1835. PubMed ID: 30541127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutations affecting a putative MutLalpha endonuclease motif impact multiple mismatch repair functions.
    Erdeniz N; Nguyen M; Deschênes SM; Liskay RM
    DNA Repair (Amst); 2007 Oct; 6(10):1463-70. PubMed ID: 17567544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct regulation of Mlh1p heterodimers in meiosis and mitosis in Saccharomyces cerevisiae.
    Cotton VE; Hoffmann ER; Borts RH
    Genetics; 2010 Jun; 185(2):459-67. PubMed ID: 20382827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Yeast mutator phenotype enforced by Arabidopsis PMS1 expression.
    Galles C; Spampinato CP
    Mol Biol Rep; 2013 Mar; 40(3):2107-14. PubMed ID: 23184005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Genetic Incompatibility Accelerates Adaptation in Yeast.
    Bui DT; Dine E; Anderson JB; Aquadro CF; Alani EE
    PLoS Genet; 2015 Jul; 11(7):e1005407. PubMed ID: 26230253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MutLα suppresses error-prone DNA mismatch repair and preferentially protects noncoding DNA from mutations.
    Kadyrova LY; Mieczkowski PA; Kadyrov FA
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-protein interactions and disease: use of S. cerevisiae as a model system.
    Hsu WT; Pang CN; Sheetal J; Wilkins MR
    Biochim Biophys Acta; 2007 Jul; 1774(7):838-47. PubMed ID: 17560182
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories.
    Laan L; Koschwanez JH; Murray AW
    Elife; 2015 Oct; 4():. PubMed ID: 26426479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Networking proteins in yeast.
    Hazbun TR; Fields S
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4277-8. PubMed ID: 11296274
    [No Abstract]   [Full Text] [Related]  

  • 56. Characterization of a highly conserved binding site of Mlh1 required for exonuclease I-dependent mismatch repair.
    Dherin C; Gueneau E; Francin M; Nunez M; Miron S; Liberti SE; Rasmussen LJ; Zinn-Justin S; Gilquin B; Charbonnier JB; Boiteux S
    Mol Cell Biol; 2009 Feb; 29(3):907-18. PubMed ID: 19015241
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production and Characterization of Snacks Utilizing Composite Flour from Unripe Plantain (
    Adegunwa MO; Ogungbesan BO; Adekoya OA; Akinloye EE; Idowu OD; Alamu OE
    Foods; 2024 Mar; 13(6):. PubMed ID: 38540840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of EXO1 nuclease activity in genome maintenance, the immune response and tumor suppression in Exo1D173A mice.
    Wang S; Lee K; Gray S; Zhang Y; Tang C; Morrish RB; Tosti E; van Oers J; Amin MR; Cohen PE; MacCarthy T; Roa S; Scharff MD; Edelmann W; Chahwan R
    Nucleic Acids Res; 2022 Aug; 50(14):8093-8106. PubMed ID: 35849338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair.
    Kratz K; Artola-Borán M; Kobayashi-Era S; Koh G; Oliveira G; Kobayashi S; Oliveira A; Zou X; Richter J; Tsuda M; Sasanuma H; Takeda S; Loizou JI; Sartori AA; Nik-Zainal S; Jiricny J
    Mol Cell Biol; 2021 Aug; 41(9):e0030321. PubMed ID: 34228493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway.
    Guan J; Lu C; Jin Q; Lu H; Chen X; Tian L; Zhang Y; Ortega J; Zhang J; Siteni S; Chen M; Gu L; Shay JW; Davis AJ; Chen ZJ; Fu YX; Li GM
    Cancer Cell; 2021 Jan; 39(1):109-121.e5. PubMed ID: 33338427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.