BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1148163)

  • 1. Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals.
    Eaton WA; Hofrichter J; Makinen MW; Andersen RD; Ludwig ML
    Biochemistry; 1975 May; 14(10):2146-51. PubMed ID: 1148163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance coherent anti-Stokes Raman scattering spectra of oxidized and semiquinone forms of Clostridium MP flavodoxin.
    Dutta PK; Spiro TG
    Biochemistry; 1980 Apr; 19(8):1590-3. PubMed ID: 7378367
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the proton magnetic resonance spectra on the oxidation state of flavodoxin from Clostridium MP and from Peptostreptococcus elsdenii.
    James TL; Ludwig ML; Cohn M
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3292-5. PubMed ID: 4519623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state.
    Smith WW; Burnett RM; Darling GD; Ludwig ML
    J Mol Biol; 1977 Nov; 117(1):195-225. PubMed ID: 599565
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient kinetics of redox reactions of flavodoxin: effects of chemical modification of the flavin mononucleotide prosthetic group on the dynamics of intermediate complex formation and electron transfer.
    Simondsen RP; Tollin G
    Biochemistry; 1983 Jun; 22(12):3008-16. PubMed ID: 6307350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP; Krey GD
    Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical properties of flavodoxin from Desulfovibrio vulgaris.
    Dubourdieu M; le Gall J; Favaudon V
    Biochim Biophys Acta; 1975 Mar; 376(3):519-32. PubMed ID: 235984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-jump studies of Desulfovibrio vulgaris flavodoxin: kinetics of FMN binding and of reduction of semiquinone by methyl viologen.
    Dubourdieu M; MacKnight ML; Tollin G
    Biochem Biophys Res Commun; 1974 Sep; 60(2):649-55. PubMed ID: 4420157
    [No Abstract]   [Full Text] [Related]  

  • 11. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function.
    Tegoni M; Gervais M; Desbois A
    Biochemistry; 1997 Jul; 36(29):8932-46. PubMed ID: 9220981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of reduction of high redox potential ferredoxins by the semiquinones of Clostridium pasteurianum flavodoxin and exogenous flavin mononucleotide. Electrostatic and redox potential effects.
    Przysiecki CT; Cheddar G; Meyer TE; Tollin G; Cusanovich MA
    Biochemistry; 1985 Sep; 24(20):5647-52. PubMed ID: 4074719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution.
    Burnett RM; Darling GD; Kendall DS; LeQuesne ME; Mayhew SG; Smith WW; Ludwig ML
    J Biol Chem; 1974 Jul; 249(14):4383-92. PubMed ID: 4843141
    [No Abstract]   [Full Text] [Related]  

  • 15. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of a clostridial flavodoxin, an electron-transferring flavoprotein. 3. An interpretation of an electron-density map at a nominal resolution of 3.25 Angstrom.
    Ludwig ML; Andersen RD; Apgar PA; Burnett RM; LeQuesne ME; Mayhew SG
    Cold Spring Harb Symp Quant Biol; 1972; 36():369-80. PubMed ID: 4508151
    [No Abstract]   [Full Text] [Related]  

  • 20. The structure of a clostridial flavodoxin. I. Crystallographic characterization of the oxidized and semiquinone forms.
    Ludwig ML; Andersen RD; Mayhew SG; Massey V
    J Biol Chem; 1969 Nov; 244(21):6047-8. PubMed ID: 5350955
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.