BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1148164)

  • 21. Divalent cation binding to wheat germ calmodulin.
    Yoshida M; Minowa O; Yagi K
    J Biochem; 1983 Dec; 94(6):1925-33. PubMed ID: 6323385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divalent cation regulation of the function of the leukocyte integrin LFA-1.
    Dransfield I; CabaƱas C; Craig A; Hogg N
    J Cell Biol; 1992 Jan; 116(1):219-26. PubMed ID: 1346139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of metal binding on protein structure.
    Friedberg F
    Q Rev Biophys; 1974 Feb; 7(1):1-33. PubMed ID: 4600801
    [No Abstract]   [Full Text] [Related]  

  • 24. Regulation of the fibronectin receptor affinity by divalent cations.
    Gailit J; Ruoslahti E
    J Biol Chem; 1988 Sep; 263(26):12927-32. PubMed ID: 2458338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The divalent cation dependence of bovine brain calmodulin-dependent phosphatase.
    Wolff DJ; Sved DW
    J Biol Chem; 1985 Apr; 260(7):4195-202. PubMed ID: 2579945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study.
    Peyser YM; Ajtai K; Werber MM; Burghardt TP; Muhlrad A
    Biochemistry; 1997 Apr; 36(17):5170-8. PubMed ID: 9136878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of divalent cations on beta-cell electrical activity.
    Ribalet B; Beigelman PM
    Am J Physiol; 1981 Jul; 241(1):C59-67. PubMed ID: 7018263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of divalent cations with beta-galactosidase (Escherichia coli).
    Huber RE; Parfett C; Woulfe-Flanagan H; Thompson DJ
    Biochemistry; 1979 Sep; 18(19):4090-5. PubMed ID: 114210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the ribulosebisphosphate carboxylase-carbon dioxide-divalent cation-carboxypentitol bisphosphate complex.
    Miziorko HM; Sealy RC
    Biochemistry; 1980 Mar; 19(6):1167-71. PubMed ID: 6245681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostatics.
    Ananyev GM; Dismukes GC
    Biochemistry; 1996 Nov; 35(46):14608-17. PubMed ID: 8931559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substitution studies of the second divalent metal cation requirement of protein tyrosine kinase CSK.
    Sun G; Budde RJ
    Biochemistry; 1999 Apr; 38(17):5659-65. PubMed ID: 10220355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational changes induced by binding of bivalent cations to oncomodulin, a paravalbumin-like tumour protein.
    MacManus JP; Szabo AG; Williams RE
    Biochem J; 1984 May; 220(1):261-8. PubMed ID: 6743266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of calcium with bovine plasma protein C.
    Amphlett GW; Kisiel W; Castellino FJ
    Biochemistry; 1981 Apr; 20(8):2156-61. PubMed ID: 6894545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mn2(+)-binding properties of a recombinant protein-tyrosine kinase derived from the human insulin receptor.
    Wente SR; Villalba M; Schramm VL; Rosen OM
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2805-9. PubMed ID: 2157215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel interactions of cations with dihydropyridine calcium antagonist binding sites in brain.
    Bolger GT; Skolnick P
    Br J Pharmacol; 1986 Aug; 88(4):857-66. PubMed ID: 3017494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK; Oesterling RM
    Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trapping of transition metal-nucleotide complexes in myosin subfragment 1 by cross-linking thiols; divalent transition metal probes of the active site.
    Dalbey RE; Wells JA; Yount RG
    Biochemistry; 1983 Jan; 22(2):490-6. PubMed ID: 6824640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase.
    Szajn H; Csopak H
    Biochim Biophys Acta; 1977 Jan; 480(1):143-53. PubMed ID: 12823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative affinities of divalent cations to the site of the tight calcium binding in G-actin.
    Strzekecka-Golaszewska H
    Biochim Biophys Acta; 1973 May; 310(1):60-9. PubMed ID: 4710599
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.