BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1148167)

  • 21. On the reaction mechanism of phenol hydroxylase. New information obtained by correlation of fluorescence and absorbance stopped flow studies.
    Maeda-Yorita K; Massey V
    J Biol Chem; 1993 Feb; 268(6):4134-44. PubMed ID: 8440702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melilotate hydroxylase. Purification of the enzyme and the nature of the prosthetic group.
    Levy CC
    J Biol Chem; 1967 Feb; 242(4):747-53. PubMed ID: 6017743
    [No Abstract]   [Full Text] [Related]  

  • 23. The metabolism of coumarin by a microorganism. V. Melilotate hydroxylase.
    Levy CC; Frost P
    J Biol Chem; 1966 Feb; 241(4):997-1003. PubMed ID: 4285850
    [No Abstract]   [Full Text] [Related]  

  • 24. Deuterium isotope effects during formation of phenols by hepatic monoxygenases. Evidence for an alternative to arene oxide pathway.
    Tomaszewski JE; Jerina DM; Daly JW
    Biochemistry; 1975 May; 14(9):2024-31. PubMed ID: 1125208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steady-state kinetic isotope effects support a complex role of Arg226 in the proposed desulfonation mechanism of alkanesulfonate monooxygenase.
    Robbins JM; Ellis HR
    Biochemistry; 2014 Jan; 53(1):161-8. PubMed ID: 24321058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase.
    Brooks HB; Jones LH; Davidson VL
    Biochemistry; 1993 Mar; 32(10):2725-9. PubMed ID: 8448129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate.
    Atkins WM; Sligar SG
    Biochemistry; 1988 Mar; 27(5):1610-6. PubMed ID: 3284586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism.
    Miller SM; Klinman JP
    Biochemistry; 1985 Apr; 24(9):2114-27. PubMed ID: 3995006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady-state and stopped-flow kinetic measurements of the primary deuterium isotope effect in the reaction catalyzed by p-cresol methylhydroxylase.
    McIntire WS; Hopper DJ; Singer TP
    Biochemistry; 1987 Jun; 26(13):4107-17. PubMed ID: 3651440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa.
    Groseclose EE; Ribbons DW; Hughes H
    Biochem Biophys Res Commun; 1973 Dec; 55(3):897-903. PubMed ID: 4357436
    [No Abstract]   [Full Text] [Related]  

  • 33. NIH shift in the hydroxylation of aromatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene oxide intermediate.
    Vannelli T; Hooper AB
    Biochemistry; 1995 Sep; 34(37):11743-9. PubMed ID: 7547906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy.
    Matsunaga I; Yamada A; Lee DS; Obayashi E; Fujiwara N; Kobayashi K; Ogura H; Shiro Y
    Biochemistry; 2002 Feb; 41(6):1886-92. PubMed ID: 11827534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic isotope effects of peptidylglycine alpha-hydroxylating mono-oxygenase reaction.
    Takahashi K; Onami T; Noguchi M
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):131-7. PubMed ID: 9806894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases.
    Tian G; Berry JA; Klinman JP
    Biochemistry; 1994 Jan; 33(1):226-34. PubMed ID: 8286345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The stereochemistry of NADH utilization by the flavoenzyme monooxygenase orcinol hydroxylase.
    Ryerson CC; Walsh C
    J Biol Chem; 1979 Jun; 254(11):4349-51. PubMed ID: 220242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo.
    Andersen ME; Clewell HJ; Mahle DA; Gearhart JM
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):158-65. PubMed ID: 8079349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole.
    Cash MT; Miles EW; Phillips RS
    Arch Biochem Biophys; 2004 Dec; 432(2):233-43. PubMed ID: 15542062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.