BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11481678)

  • 1. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Sopher C; Kim IS; Lee H
    Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae.
    Wang X; Fang B; Luo J; Li W; Zhang L
    Biotechnol Lett; 2007 Sep; 29(9):1409-12. PubMed ID: 17653624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Kim IS; Lee H
    FEMS Microbiol Lett; 2002 Apr; 209(2):223-8. PubMed ID: 12007809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the role of a conserved glycine motif in the Saccharomyces cerevisiae xylose reductase.
    Chu BC; Lee H
    Curr Microbiol; 2006 Aug; 53(2):118-23. PubMed ID: 16802208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putative xylose and arabinose reductases in Saccharomyces cerevisiae.
    Träff KL; Jönsson LJ; Hahn-Hägerdal B
    Yeast; 2002 Oct; 19(14):1233-41. PubMed ID: 12271459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase.
    Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K
    J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose utilisation: cloning and characterisation of the Xylose reductase from Candida tenuis.
    Häcker B; Habenicht A; Kiess M; Mattes R
    Biol Chem; 1999 Dec; 380(12):1395-403. PubMed ID: 10661866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.
    Zhang M; Jiang ST; Zheng Z; Li XJ; Luo SZ; Wu XF
    J Basic Microbiol; 2015 Jul; 55(7):907-21. PubMed ID: 25709086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae.
    Gárdonyi M; Jeppsson M; Lidén G; Gorwa-Grauslund MF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2003 Jun; 82(7):818-24. PubMed ID: 12701148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.