These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1148203)

  • 41. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments.
    Pollard TD
    J Cell Biol; 1986 Dec; 103(6 Pt 2):2747-54. PubMed ID: 3793756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamic characterization of the binding of nucleotides to glycyl-tRNA synthetase.
    Dignam JD; Nada S; Chaires JB
    Biochemistry; 2003 May; 42(18):5333-40. PubMed ID: 12731874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic analysis of the polymerization process of actin.
    Arisaka F; Noda H; Maruyama K
    Biochim Biophys Acta; 1975 Aug; 400(2):263-74. PubMed ID: 1164507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of ATP hydrolysis by polymeric actin.
    Ohm T; Wegner A
    Biochim Biophys Acta; 1994 Sep; 1208(1):8-14. PubMed ID: 8086442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ATP on actin filament stiffness.
    Janmey PA; Hvidt S; Oster GF; Lamb J; Stossel TP; Hartwig JH
    Nature; 1990 Sep; 347(6288):95-9. PubMed ID: 2168523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study of the binding of adenosine diphosphate to myosin subfragment-1.
    Yoshida M; Morita F
    J Biochem; 1975 May; 77(5):983-92. PubMed ID: 125750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exchange of ADP, ATP and 1: N6-ethenoadenosine 5'-triphosphate at G-actin. Equilibrium and kinetics.
    Neidl C; Engel J
    Eur J Biochem; 1979 Nov; 101(1):163-9. PubMed ID: 510301
    [No Abstract]   [Full Text] [Related]  

  • 50. The influence of adenosine triphosphate, adenosine diphosphate and cytochalasin B on nucleotide exchange of F-actin. Evidence that treadmilling is not involved.
    Dancker P; Fischer S
    Biochim Biophys Acta; 1985 Jan; 838(1):6-11. PubMed ID: 3967046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of nucleotide-free uncoating ATPase and its binding to ATP, ADP, and ATP analogues.
    Gao B; Greene L; Eisenberg E
    Biochemistry; 1994 Mar; 33(8):2048-54. PubMed ID: 8117662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid exchange of actin-bound nucleotide in perfused rat heart.
    Bárány M; de Tombe PP
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1394-401. PubMed ID: 15020303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics processivity and the direction of motion of Ncd.
    Pechatnikova E; Taylor EW
    Biophys J; 1999 Aug; 77(2):1003-16. PubMed ID: 10423445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of ATP concentration on the rate of actin polymerization.
    Fung BM; Eyob E
    Arch Biochem Biophys; 1983 Feb; 220(2):370-8. PubMed ID: 6824330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the ATP-G-actin aggregates formed at low potassium chloride concentration.
    Grazi E; Aleotti A; Ferri A
    Biochem J; 1984 Apr; 219(1):273-6. PubMed ID: 6721856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization.
    Jepsen L; Sept D
    Biophys J; 2020 Nov; 119(9):1800-1810. PubMed ID: 33080221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion.
    Maciver SK; Weeds AG
    FEBS Lett; 1994 Jun; 347(2-3):251-6. PubMed ID: 8034013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods.
    Liao YJ; Shiang YC; Chen LY; Hsu CL; Huang CC; Chang HT
    Nanotechnology; 2013 Nov; 24(44):444003. PubMed ID: 24113811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin.
    Pollard TD; Goldberg I; Schwarz WH
    J Biol Chem; 1992 Oct; 267(28):20339-45. PubMed ID: 1400353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.