These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 11482395)

  • 1. Nonequilibrium mass transfer of multi-component NAPL in a soil column venting.
    Lee SH; Yeom IT; Ahn KH; Khim J
    Environ Technol; 2001 Jun; 22(6):741-8. PubMed ID: 11482395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction.
    Yoon H; Kim JH; Liljestrand HM; Khim J
    J Contam Hydrol; 2002 Jan; 54(1-2):1-18. PubMed ID: 11848263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling mass transfer during venting/soil vapour extraction: Non-aqueous phase liquid/gas mass transfer coefficient estimation.
    Esrael D; Kacem M; Benadda B
    J Contam Hydrol; 2017 Jul; 202():70-79. PubMed ID: 28559008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-effective monitoring for a soil vapor extraction (SVE) system: a simplified modeling and gas sensor test.
    Yang JW; Cho HJ; Choi GY; Lee SH
    Environ Monit Assess; 2001 Jul; 70(1-2):201-10. PubMed ID: 11516014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills.
    Fagerlund F; Niemi A
    J Contam Hydrol; 2007 Jan; 89(3-4):174-98. PubMed ID: 17014926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of Sherwood-Gilland models for NAPL dissolution and their relationship to soil properties.
    Kokkinaki A; O'Carroll DM; Werth CJ; Sleep BE
    J Contam Hydrol; 2013 Dec; 155():87-98. PubMed ID: 24220700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infiltration and evaporation of small hydrocarbon spills at gas stations.
    Hilpert M; Breysse PN
    J Contam Hydrol; 2014 Dec; 170():39-52. PubMed ID: 25444115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil clean up by venting: comparison between modelling and experimental VOC removal results.
    Brusturean GA; Todinca T; Perju D; Carré J; Bourgois J
    Environ Technol; 2007 Oct; 28(10):1153-62. PubMed ID: 17970522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal treatment of soils contaminated with gas oil: influence of soil composition and treatment temperature.
    Piña J; Merino J; Errazu AF; Bucalá V
    J Hazard Mater; 2002 Oct; 94(3):273-90. PubMed ID: 12220829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional numerical model for soil vapor extraction.
    Nguyen VT; Zhao L; Zytner RG
    J Contam Hydrol; 2013 Apr; 147():82-95. PubMed ID: 23501944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatilization behaviors of diesel oil from the soils.
    Li YY; Zheng XL; Li B; Ma YX; Cao JH
    J Environ Sci (China); 2004; 16(6):1033-6. PubMed ID: 15900744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of estimating multicomponent nonaqueous-phase liquid mass in porous media using aqueous concentration ratios.
    Devlint JF; Barbaro JR
    Environ Toxicol Chem; 2001 Nov; 20(11):2443-9. PubMed ID: 11699767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil.
    Osterreicher-Cunha P; Vargas Edo A; Guimarães JR; de Campos TM; Nunes CM; Costa A; Antunes Fdos S; da Silva MI; Mano DM
    J Hazard Mater; 2004 Jul; 110(1-3):63-76. PubMed ID: 15177727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.
    Allaire SE; Yates SR; Ernst FF; Gan J
    J Environ Qual; 2002; 31(4):1079-87. PubMed ID: 12175024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone.
    Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC
    Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation.
    Choi H; Lim HN; Kim J; Hwang TM; Kang JW
    J Contam Hydrol; 2002 Jul; 57(1-2):81-98. PubMed ID: 12143994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polar fuel constituents: compound identification and equilibrium partitioning between nonaqueous phase liquids and water.
    Schmidt TC; Kleinert P; Stengel C; Goss KU; Haderlein SB
    Environ Sci Technol; 2002 Oct; 36(19):4074-80. PubMed ID: 12380077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physical-chemical screening model for anticipating widespread contamination of community water supply wells by gasoline constituents.
    Arey JS; Gschwend PM
    J Contam Hydrol; 2005 Jan; 76(1-2):109-38. PubMed ID: 15588575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.