These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 1148254)
41. Excitation of micelle-solubilized chlorophyll during the peroxidase-catalyzed aerobic oxidation of isonicotinic acid hydrazide. Nassi L; Cilento G Arch Biochem Biophys; 1984 Feb; 229(1):220-5. PubMed ID: 6703694 [TBL] [Abstract][Full Text] [Related]
42. Concentration quenching in chlorophyll-alpha and relation to functional charge transfer in vivo. Gutschick VP J Bioenerg Biomembr; 1978 Dec; 10(5-6):153-7. PubMed ID: 555463 [TBL] [Abstract][Full Text] [Related]
43. Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. Karukstis KK; Sauer K J Cell Biochem; 1983; 23(1-4):131-58. PubMed ID: 6373794 [TBL] [Abstract][Full Text] [Related]
44. [The effect of detergent Triton X=100 on the light induced changes in the fluorescence yield of chloroplasts]. Klimov VV; Karapetian NV; Krasnovskiĭ AA Mol Biol (Mosk); 1975; 9(2):219-26. PubMed ID: 1219381 [TBL] [Abstract][Full Text] [Related]
45. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Groot ML; Peterman EJ; van Stokkum IH; Dekker JP; van Grondelle R Biophys J; 1995 Jan; 68(1):281-90. PubMed ID: 7711252 [TBL] [Abstract][Full Text] [Related]
46. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
47. Determination of the aggregation number of detergent micelles using steady-state fluorescence quenching. Tummino PJ; Gafni A Biophys J; 1993 May; 64(5):1580-7. PubMed ID: 8324192 [TBL] [Abstract][Full Text] [Related]
48. [Quenching of chlorophyll and pheophytin fluorescence with fucoxanthin]. Paramonova LI; Naush Ia; Kreslavskiĭ VD; Stolovitskiĭ IuM Biofizika; 1982; 27(2):197-201. PubMed ID: 7074143 [TBL] [Abstract][Full Text] [Related]
49. [Study of different types of chlorophyll a aggregates in solutions and films by absorption and luminescence derivative spectroscopy]. Litvin FF; Shubin VV; Sineshchekov VA Biofizika; 1975; 20(2):202-7. PubMed ID: 1148294 [TBL] [Abstract][Full Text] [Related]
50. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Giuffra E; Zucchelli G; Sandonà D; Croce R; Cugini D; Garlaschi FM; Bassi R; Jennings RC Biochemistry; 1997 Oct; 36(42):12984-93. PubMed ID: 9335559 [TBL] [Abstract][Full Text] [Related]
51. Analyses of absorption and fluorescence spectra of water-soluble chlorophyll proteins, pigment system II particles and chlorophyll a in diethylether solution by the curve-fitting method. Sugiyama KI; Murata N Biochim Biophys Acta; 1978 Jul; 503(1):107-19. PubMed ID: 96855 [TBL] [Abstract][Full Text] [Related]
52. Chlorophyll-Inspired Red-Region Fluorophores: Building Block Synthesis and Studies in Aqueous Media. Liu R; Liu M; Hood D; Chen CY; MacNevin CJ; Holten D; Lindsey JS Molecules; 2018 Jan; 23(1):. PubMed ID: 29320445 [TBL] [Abstract][Full Text] [Related]
53. Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2. Kathiravan A; Chandramohan M; Renganathan R; Sekar S Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1783-7. PubMed ID: 18678524 [TBL] [Abstract][Full Text] [Related]
54. Characterization of mixed micelles of phospholipids of various classes and a synthetic, homogeneous analogue of the nonionic detergent Triton X-100 containing nine oxyethylene groups. Robson RJ; Dennis EA Biochim Biophys Acta; 1978 Apr; 508(3):513-24. PubMed ID: 638153 [TBL] [Abstract][Full Text] [Related]
55. Excitation spectra for photosystem I and photosystem II in chloroplasts and the spectral characteristics of the distributions of quanta between the two photosystems. Kitajima M; Butler WL Biochim Biophys Acta; 1975 Dec; 408(3):297-305. PubMed ID: 1191662 [TBL] [Abstract][Full Text] [Related]
56. Energy transfer and distribution in the red alga Porphyra perforata studied using picosecond fluorescence spectroscopy. Karukstis KK; Sauer K Biochim Biophys Acta; 1984 Jul; 766(1):141-7. PubMed ID: 6743647 [TBL] [Abstract][Full Text] [Related]
57. Organization and functionality of chlorophyll-protein complexes in thylakoid membranes isolated from Pb-treated Secale cereale. Janik E; Szczepaniuk J; Maksymiec W J Photochem Photobiol B; 2013 Aug; 125():98-104. PubMed ID: 23792911 [TBL] [Abstract][Full Text] [Related]
58. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study. Premvardhan L; Réfrégiers M; Büchel C J Phys Chem B; 2013 Sep; 117(38):11272-81. PubMed ID: 23844975 [TBL] [Abstract][Full Text] [Related]
59. Fluorescence quenching studies on the interaction of riboflavin with tryptophan and its analytical application. Li P; Liu S; Wang X; Liu Z; He Y Luminescence; 2013; 28(6):910-4. PubMed ID: 23255457 [TBL] [Abstract][Full Text] [Related]
60. Energy transfer in the photochemical apparatus of flashed bean leaves. Strasser RJ; Butler WL Biochim Biophys Acta; 1976 Dec; 449(3):412-9. PubMed ID: 999847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]