These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11482637)

  • 1. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron.
    Klausen J; Ranke J; Schwarzenbach RP
    Chemosphere; 2001 Aug; 44(4):511-7. PubMed ID: 11482637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds.
    Klausen J; Vikesland PJ; Kohn T; Burris DR; Ball WP; Roberts AL
    Environ Sci Technol; 2003 Mar; 37(6):1208-18. PubMed ID: 12680677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological characteristics in a zero-valent iron reactive barrier.
    Gu B; Watson DB; Wu L; Phillips DH; White DC; Zhou J
    Environ Monit Assess; 2002 Aug; 77(3):293-309. PubMed ID: 12194417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.
    Calabrò PS; Moraci N; Suraci P
    J Hazard Mater; 2012 Mar; 207-208():111-6. PubMed ID: 21885195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.
    Su C; Puls RW
    Environ Sci Technol; 2004 May; 38(9):2715-20. PubMed ID: 15180070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].
    Liu YL; Xia F; Liu F; Chen HH
    Huan Jing Ke Xue; 2010 Jul; 31(7):1526-32. PubMed ID: 20825021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.
    Tobler NB; Hofstetter TB; Straub KL; Fontana D; Schwarzenbach RP
    Environ Sci Technol; 2007 Nov; 41(22):7765-72. PubMed ID: 18075086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate.
    Su C; Puls RW
    Environ Sci Technol; 2003 Jun; 37(11):2582-7. PubMed ID: 12831047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive transformation of p-nitrotoluene by a new iron-fly ash packing.
    Yu B; Jin R; Liu G; Zhou J
    J Environ Sci (China); 2015 Nov; 37():31-6. PubMed ID: 26574085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hydronium, sulfate, chloride and other non-carbonate ions on hydrogen generation by anaerobic corrosion of granular cast iron.
    Ruhl AS; Jekel M
    Water Res; 2013 Oct; 47(16):6044-51. PubMed ID: 23954066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects.
    Melitas N; Chuffe-Moscoso O; Farrell J
    Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron.
    Ritter K; Odziemkowski MS; Simpgraga R; Gillham RW; Irish DE
    J Contam Hydrol; 2003 Aug; 65(1-2):121-36. PubMed ID: 12855204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of groundwater composition on subsurface iron and arsenic removal.
    Moed DH; van Halem D; Verberk JQ; Amy GL; van Dijk JC
    Water Sci Technol; 2012; 66(1):173-8. PubMed ID: 22678215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes.
    Neumann A; Hofstetter TB; Lüssi M; Cirpka OA; Petit S; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(22):8381-7. PubMed ID: 19068821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.