These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 11482653)
1. Effects of redox potential and pH value on the release of rare earth elements from soil. Cao X; Chen Y; Wang X; Deng X Chemosphere; 2001 Aug; 44(4):655-61. PubMed ID: 11482653 [TBL] [Abstract][Full Text] [Related]
2. Rare earth elements and their release dynamics under pre-definite redox conditions in a floodplain soil. Mihajlovic J; Stärk HJ; Rinklebe J Chemosphere; 2017 Aug; 181():313-319. PubMed ID: 28453963 [TBL] [Abstract][Full Text] [Related]
3. [Effects of soil pH value on the bioavailability and fractionation of rare earth elements in wheat seedling (Triticum aestivum L.)]. Cao X; Ding Z; Hu X; Wang X Huan Jing Ke Xue; 2002 Jan; 23(1):97-102. PubMed ID: 11987417 [TBL] [Abstract][Full Text] [Related]
4. Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils. Wen B; Liu Y; Hu XY; Shan XQ Chemosphere; 2006 May; 63(7):1179-86. PubMed ID: 16289225 [TBL] [Abstract][Full Text] [Related]
5. Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application. Zhang S; Shan XQ Environ Pollut; 2001; 112(3):395-405. PubMed ID: 11291446 [TBL] [Abstract][Full Text] [Related]
6. Do toxicokinetic and toxicodynamic processes hold the same for light and heavy rare earth elements in terrestrial organism Enchytraeus crypticus? Huang X; He E; Qiu H; Zhang L; Tang Y; Zhao C; Li M; Xiao X; Qiu R Environ Pollut; 2020 Jul; 262():114234. PubMed ID: 32126438 [TBL] [Abstract][Full Text] [Related]
7. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area. Khan AM; Yusoff I; Bakar NKA; Bakar AFA; Alias Y Environ Sci Pollut Res Int; 2016 Dec; 23(24):25039-25055. PubMed ID: 27677993 [TBL] [Abstract][Full Text] [Related]
8. Effect of organic acids on adsorption and desorption of rare earth elements. Shan XQ; Lian J; Wen B Chemosphere; 2002 May; 47(7):701-10. PubMed ID: 12079065 [TBL] [Abstract][Full Text] [Related]
9. Geochemical Behaviors of Rare Earth Elements (REEs) in Karst Soils under Different Land-Use Types: A Case in Yinjiang Karst Catchment, Southwest China. Han R; Xu Z Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33435431 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the bioavailability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Cao X; Wang X; Zhao G Chemosphere; 2000 Jan; 40(1):23-8. PubMed ID: 10665441 [TBL] [Abstract][Full Text] [Related]
11. Rare earth elements in German soils - A review. Mihajlovic J; Rinklebe J Chemosphere; 2018 Aug; 205():514-523. PubMed ID: 29705642 [TBL] [Abstract][Full Text] [Related]
12. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Thomas PJ; Carpenter D; Boutin C; Allison JE Chemosphere; 2014 Feb; 96():57-66. PubMed ID: 23978671 [TBL] [Abstract][Full Text] [Related]
13. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
14. [Effect of sulfur on the species of Fe and As under redox condition in paddy soil]. Tang BP; Yang SJ; Wang DZ; Rao W; Zhang YN; Wang D; Zhu YJ Huan Jing Ke Xue; 2014 Oct; 35(10):3851-61. PubMed ID: 25693393 [TBL] [Abstract][Full Text] [Related]
15. Release and mobilization of Ni, Co, and Cr under dynamic redox changes in a geogenic contaminated soil: Assessing the potential risk in serpentine paddy environments. Shaheen SM; Chen HY; Song H; Rinklebe J; Hseu ZY Sci Total Environ; 2022 Dec; 850():158087. PubMed ID: 35981572 [TBL] [Abstract][Full Text] [Related]
16. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Rinklebe J; Shaheen SM; Frohne T Chemosphere; 2016 Jan; 142():41-7. PubMed ID: 25900116 [TBL] [Abstract][Full Text] [Related]
17. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil]. Chang TJ; Cui XQ; Ruan Z; Zhao XL Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521 [TBL] [Abstract][Full Text] [Related]
18. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
19. [Fractionation and relevant influencing factors of rare-earth elements (REEs) in a soil-plant system]. Gu X; Wang X; Gu Z Huan Jing Ke Xue; 2002 Nov; 23(6):74-8. PubMed ID: 12619282 [TBL] [Abstract][Full Text] [Related]
20. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. Shaheen SM; Rinklebe J J Environ Manage; 2017 Jan; 186(Pt 2):253-260. PubMed ID: 27499501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]