BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11482976)

  • 1. A Model for Hydration Interactions between Apoferritin Molecules in Solution.
    Paunov VN; Kaler EW; Sandler SI; Petsev DN
    J Colloid Interface Sci; 2001 Aug; 240(2):640-643. PubMed ID: 11482976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces.
    Valle-Delgado JJ; Molina-Bolívar JA; Galisteo-González F; Gálvez-Ruiz MJ; Feiler A; Rutland MW
    Langmuir; 2005 Oct; 21(21):9544-54. PubMed ID: 16207034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
    Parsons DF; Boström M; Lo Nostro P; Ninham BW
    Phys Chem Chem Phys; 2011 Jul; 13(27):12352-67. PubMed ID: 21670834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
    Le Brun V; Friess W; Schultz-Fademrecht T; Muehlau S; Garidel P
    Biotechnol J; 2009 Sep; 4(9):1305-19. PubMed ID: 19579219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polarization model for hydration/double layer interactions: the role of the electrolyte ions.
    Manciu M; Ruckenstein E
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):109-28. PubMed ID: 15581557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hofmeister effects in the restabilization of IgG--latex particles: testing Ruckenstein's theory.
    López-León T; Gea-Jódar PM; Bastos-González D; Ortega-Vinuesa JL
    Langmuir; 2005 Jan; 21(1):87-93. PubMed ID: 15620288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions.
    Zhang F; Skoda MW; Jacobs RM; Martin RA; Martin CM; Schreiber F
    J Phys Chem B; 2007 Jan; 111(1):251-9. PubMed ID: 17201449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin.
    Petsev DN; Vekilov PG
    Phys Rev Lett; 2000 Feb; 84(6):1339-42. PubMed ID: 11017513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions in complex cosolvent solutions.
    Javid N; Vogtt K; Krywka C; Tolan M; Winter R
    Chemphyschem; 2007 Apr; 8(5):679-89. PubMed ID: 17328089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Light Scattering Data on the Calcium Ion Sensitivity of Caseinate Solution Thermodynamics: Relationship to Emulsion Flocculation.
    Dickinson E; Semenova MG; Belyakova LE; Antipova AS; Il'in MM; Tsapkina EN; Ritzoulis C
    J Colloid Interface Sci; 2001 Jul; 239(1):87-97. PubMed ID: 11397052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute Aggregation Rate Constants of Hematite Particles in Aqueous Suspensions: A Comparison of Two Different Surface Morphologies.
    Schudel M; Behrens SH; Holthoff H; Kretzschmar R; Borkovec M
    J Colloid Interface Sci; 1997 Dec; 196(2):241-253. PubMed ID: 9792750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM.
    Tsapikouni TS; Missirlis YF
    Colloids Surf B Biointerfaces; 2007 May; 57(1):89-96. PubMed ID: 17337166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of introduced charge in cellulose gels on surface interactions and the adsorption of highly charged cationic polyelectrolytes.
    Notley SM
    Phys Chem Chem Phys; 2008 Apr; 10(13):1819-25. PubMed ID: 18350187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration interactions and stability of soluble microbial products in aqueous solutions.
    Wang LL; Wang LF; Ye XD; Yu HQ
    Water Res; 2013 Oct; 47(15):5921-9. PubMed ID: 23911223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.