These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1148334)

  • 21. Nitrogen-14 NMR spectroscopy using residual dipolar splittings in solids.
    Cavadini S; Lupulescu A; Antonijevic S; Bodenhausen G
    J Am Chem Soc; 2006 Jun; 128(24):7706-7. PubMed ID: 16771462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes.
    Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL
    Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
    Dayie KT; Brodsky AS; Williamson JR
    J Mol Biol; 2002 Mar; 317(2):263-78. PubMed ID: 11902842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional nuclear magnetic resonance method for identifying the HN/N signals of amino-acid residues following glycine.
    Gehring K; Guittet E
    J Magn Reson B; 1995 Nov; 109(2):206-8. PubMed ID: 7582603
    [No Abstract]   [Full Text] [Related]  

  • 25. Frozen-solution conformational analysis by REDOR spectroscopy.
    Smith LJ; Boulineau FP; Raftery D; Wei A
    J Am Chem Soc; 2003 Dec; 125(49):14958-9. PubMed ID: 14653709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
    Hennig J; Warner LR; Simon B; Geerlof A; Mackereth CD; Sattler M
    Methods Enzymol; 2015; 558():333-362. PubMed ID: 26068746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular applications of 31P and 13C nuclear magnetic resonance.
    Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA
    Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ring-substituted benzohydroxamic acids: 1H, 13C and 15N NMR spectra and NH-OH proton exchange.
    Schraml J; Tkadlecová M; Pataridis S; Soukupová L; Blechta V; Roithová J; Exner O
    Magn Reson Chem; 2005 Jul; 43(7):535-42. PubMed ID: 15861383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of protein motions via relaxation measurements.
    Peng JW; Wagner G
    Methods Enzymol; 1994; 239():563-96. PubMed ID: 7830599
    [No Abstract]   [Full Text] [Related]  

  • 30. Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to large biochemically important molecules.
    Gust D; Moon RB; Roberts JD
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4696-700. PubMed ID: 1107997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two- and three-dimensional 1H/13C PISEMA experiments and their application to backbone and side chain sites of amino acids and peptides.
    Gu ZT; Opella SJ
    J Magn Reson; 1999 Oct; 140(2):340-6. PubMed ID: 10497041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear magnetic resonance as a tool to study brain metabolism.
    Bachelard HS; Cox DW; Morris PG
    Gerontology; 1987; 33(3-4):235-46. PubMed ID: 3653705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient triple-resonance experiment for proton-directed sequential backbone assignment of medium-sized proteins.
    Wang AC; Lodi PJ; Qin J; Vuister GW; Gronenborn AM; Clore GM
    J Magn Reson B; 1994 Oct; 105(2):196-8. PubMed ID: 7952935
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanistic studies utilizing oxygen-18 analyzed by carbon-13 and nitrogen-15 nuclear magnetic resonance spectroscopy.
    Risley JM; Van Etten RL
    Methods Enzymol; 1989; 177():376-89. PubMed ID: 2607988
    [No Abstract]   [Full Text] [Related]  

  • 35. Proton NMR and NOE structural and dynamic studies of larger proteins and nucleic acids aided by isotope labels: T4 lysozyme.
    McIntosh LP; Dahlquist FW; Redfield AG
    J Biomol Struct Dyn; 1987 Aug; 5(1):21-34. PubMed ID: 3271466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii.
    Vervoort J; Müller F; Mayhew SG; van den Berg WA; Moonen CT; Bacher A
    Biochemistry; 1986 Nov; 25(22):6789-99. PubMed ID: 3801391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules.
    Palmer AG; Kroenke CD; Loria JP
    Methods Enzymol; 2001; 339():204-38. PubMed ID: 11462813
    [No Abstract]   [Full Text] [Related]  

  • 38. A theoretical study of rotational diffusion models for rod-shaped viruses. The influence of motion on 31P nuclear magnetic resonance lineshapes and transversal relaxation.
    Magusin PC; Hemminga MA
    Biophys J; 1993 Jun; 64(6):1851-60. PubMed ID: 8369411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorus-31 transverse relaxation rate measurements by NMR spectroscopy: insight into conformational exchange along the nucleic acid backbone.
    Catoire LJ
    J Biomol NMR; 2004 Feb; 28(2):179-84. PubMed ID: 14755162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution.
    Sharif S; Huot MC; Tolstoy PM; Toney MD; Jonsson KH; Limbach HH
    J Phys Chem B; 2007 Apr; 111(15):3869-76. PubMed ID: 17388551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.