These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1148361)

  • 1. Equations for membrane transport. Experimental and theoretical tests of the frictional model.
    Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP
    Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A; Grzegorczyn S
    Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics.
    Malusis MA; Shackelford CD; Maneval JE
    J Contam Hydrol; 2012 Sep; 138-139():40-59. PubMed ID: 22797191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the permeability of biological membranes. Application to the glomerular wall.
    Verniory A; Du Bois R; Decoodt P; Gassee JP; Lambert PP
    J Gen Physiol; 1973 Oct; 62(4):489-507. PubMed ID: 4755850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 3. Evaluation of Hij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):111-8. PubMed ID: 24044291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of electrical and permeability properties of ion-selective membranes.
    Krämer H; Meares P
    Biophys J; 1969 Aug; 9(8):1006-28. PubMed ID: 5822426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions.
    Slezak A; Turczyński B
    Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 2. Evaluation of Lij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):103-9. PubMed ID: 24044290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic equations for membrane transport of multicomponent solutions.
    Suchanek G
    Gen Physiol Biophys; 2006 Mar; 25(1):53-63. PubMed ID: 16714775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):241-56. PubMed ID: 24596040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization].
    Slezak A
    Polim Med; 2010; 40(1):15-24. PubMed ID: 20446525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport across ion-exchange resin membranes: the frictional model of transport.
    Meares P; Thain JF; Dawson DG
    Membranes; 1972; 1():55-124. PubMed ID: 4585226
    [No Abstract]   [Full Text] [Related]  

  • 16. [Application of the network thermodynamics to interpretation of transport in a microsystems: transport of homogeneous solutions through polymeric membrane].
    Slezak A
    Polim Med; 2011; 41(1):29-41. PubMed ID: 21744656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 5. Evaluation of Nij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):257-75. PubMed ID: 24596041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions 7. Evaluation of Sij Peusner's coefficients for polymeric membrane].
    Batko KM; Ślęzak-Prochazka I; Ślęzak A
    Polim Med; 2014; 44(1):39-49. PubMed ID: 24918655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of active transmembrane transport in a mixture theory framework.
    Ateshian GA; Morrison B; Hung CT
    Ann Biomed Eng; 2010 May; 38(5):1801-14. PubMed ID: 20213212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.