BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11483611)

  • 1. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion.
    Seigneuret M; Delaguillaumie A; Lagaudrière-Gesbert C; Conjeaud H
    J Biol Chem; 2001 Oct; 276(43):40055-64. PubMed ID: 11483611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
    Seigneuret M
    Biophys J; 2006 Jan; 90(1):212-27. PubMed ID: 16352525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs.
    Kitadokoro K; Bordo D; Galli G; Petracca R; Falugi F; Abrignani S; Grandi G; Bolognesi M
    EMBO J; 2001 Jan; 20(1-2):12-8. PubMed ID: 11226150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural organization and interactions of transmembrane domains in tetraspanin proteins.
    Kovalenko OV; Metcalf DG; DeGrado WF; Hemler ME
    BMC Struct Biol; 2005 Jun; 5():11. PubMed ID: 15985154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regions of the large extracellular domain of tetraspanin CD9 are involved in the control of human multinucleated giant cell formation.
    Hulme RS; Higginbottom A; Palmer J; Partridge LJ; Monk PN
    PLoS One; 2014; 9(12):e116289. PubMed ID: 25551757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3.
    Yu J; Lee CY; Changou CA; Cedano-Prieto DM; Takada YK; Takada Y
    Biochem J; 2017 Feb; 474(4):589-596. PubMed ID: 27993971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subunit association and conformational flexibility in the head subdomain of human CD81 large extracellular loop.
    Kitadokoro K; Ponassi M; Galli G; Petracca R; Falugi F; Grandi G; Bolognesi M
    Biol Chem; 2002 Sep; 383(9):1447-52. PubMed ID: 12437138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional domains in tetraspanin proteins.
    Stipp CS; Kolesnikova TV; Hemler ME
    Trends Biochem Sci; 2003 Feb; 28(2):106-12. PubMed ID: 12575999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor.
    Langedijk JP; de Groot BL; Berendsen HJ; van Oirschot JT
    Virology; 1998 Apr; 243(2):293-302. PubMed ID: 9568029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid sequence of EC2 domain in CD81 is highly conserved in Japanese subjects.
    Ito N; Kawata S; Tamura S; Nakajima H; Kiso S; Saeki A; Oue T; Hanafusa T; Matsuzawa Y
    Hepatology; 2000 Feb; 31(2):544-5. PubMed ID: 10691378
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of CD9 extracellular domains important in regulation of CHO cell adhesion to fibronectin and fibronectin pericellular matrix assembly.
    Cook GA; Longhurst CM; Grgurevich S; Cholera S; Crossno JT; Jennings LK
    Blood; 2002 Dec; 100(13):4502-11. PubMed ID: 12453879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation.
    Charrin S; Manié S; Oualid M; Billard M; Boucheix C; Rubinstein E
    FEBS Lett; 2002 Apr; 516(1-3):139-44. PubMed ID: 11959120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking.
    Kovalenko OV; Yang X; Kolesnikova TV; Hemler ME
    Biochem J; 2004 Jan; 377(Pt 2):407-17. PubMed ID: 14556650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inner loop of tetraspanins CD82 and CD81 mediates interactions with human T cell lymphotrophic virus type 1 Gag protein.
    Mazurov D; Heidecker G; Derse D
    J Biol Chem; 2007 Feb; 282(6):3896-903. PubMed ID: 17166843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic structure of SAS, a member of the transmembrane 4 superfamily amplified in human sarcomas.
    Jankowski SA; De Jong P; Meltzer PS
    Genomics; 1995 Jan; 25(2):501-6. PubMed ID: 7789984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refining structural and functional predictions for secretasome components by comparative sequence analysis.
    Mushegian A
    Proteins; 2002 Apr; 47(1):69-74. PubMed ID: 11870866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structural biology of human CD81, a receptor for hepatitis C virus].
    Kitadokoro K
    Uirusu; 2004 Jun; 54(1):39-47. PubMed ID: 15449903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution.
    Min G; Wang H; Sun TT; Kong XP
    J Cell Biol; 2006 Jun; 173(6):975-83. PubMed ID: 16785325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene structure, chromosomal localization, and protein sequence of mouse CD53 (Cd53): evidence that the transmembrane 4 superfamily arose by gene duplication.
    Wright MD; Rochelle JM; Tomlinson MG; Seldin MF; Williams AF
    Int Immunol; 1993 Feb; 5(2):209-16. PubMed ID: 8452817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.