These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11483708)

  • 1. State-dependent action of grayanotoxin I on Na(+) channels in frog ventricular myocytes.
    Yuki T; Yamaoka K; Yakehiro M; Seyama I
    J Physiol; 2001 Aug; 534(Pt 3):777-90. PubMed ID: 11483708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the variations in potency of grayanotoxin analogs in modifying frog sodium channels of differing subtypes.
    Yakehiro M; Yuki T; Yamaoka K; Furue T; Mori Y; Imoto K; Seyama I
    Mol Pharmacol; 2000 Oct; 58(4):692-700. PubMed ID: 10999938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications.
    Duch DS; Hernandez A; Levinson SR; Urban BW
    J Gen Physiol; 1992 Oct; 100(4):623-45. PubMed ID: 1334121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of lipid-soluble toxins on sodium channels and L-type calcium channels in frog ventricular cells.
    Furue T; Yakehiro M; Seyama I
    Hiroshima J Med Sci; 1997 Mar; 46(1):43-50. PubMed ID: 9114566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct sites regulating grayanotoxin binding and unbinding to D4S6 of Na(v)1.4 sodium channel as revealed by improved estimation of toxin sensitivity.
    Maejima H; Kinoshita E; Seyama I; Yamaoka K
    J Biol Chem; 2003 Mar; 278(11):9464-71. PubMed ID: 12524436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of grayanotoxin evoked modification of sodium channels in squid giant axons.
    Yakehiro M; Seyama I; Narahashi T
    Pflugers Arch; 1997 Feb; 433(4):403-12. PubMed ID: 9082327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point-mutations related to the loss of batrachotoxin binding abolish the grayanotoxin effect in Na(+) channel isoforms.
    Ishii H; Kinoshita E; Kimura T; Yakehiro M; Yamaoka K; Imoto K; Mori Y; Seyama I
    Jpn J Physiol; 1999 Oct; 49(5):457-61. PubMed ID: 10603430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel site on sodium channel alpha-subunit responsible for the differential sensitivity of grayanotoxin in skeletal and cardiac muscle.
    Kimura T; Yamaoka K; Kinoshita E; Maejima H; Yuki T; Yakehiro M; Seyama I
    Mol Pharmacol; 2001 Oct; 60(4):865-72. PubMed ID: 11562450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of two slow inactivation mechanisms and their influence on the sodium channel activity of frog ventricular myocytes.
    Furue T; Yakehiro M; Yamaoka K; Sumii K; Seyama I
    Pflugers Arch; 1998 Oct; 436(5):631-8. PubMed ID: 9716693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of batrachotoxin-modified Na+ channels in GH3 cells. Characterization and pharmacological modification.
    Wang GK; Wang SY
    J Gen Physiol; 1992 Jan; 99(1):1-20. PubMed ID: 1311019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of benzocaine in batrachotoxin-modified Na+ channels. State-dependent interactions.
    Wang GK; Wang SY
    J Gen Physiol; 1994 Mar; 103(3):501-18. PubMed ID: 8195785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of veratridine-modified single Na+ channels in guinea pig ventricular myocytes.
    Sunami A; Sasano T; Matsunaga A; Fan Z; Swanobori T; Hiraoka M
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H454-63. PubMed ID: 8383458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel.
    Kimura T; Kinoshita E; Yamaoka K; Yuki T; Yakehiro M; Seyama I
    FEBS Lett; 2000 Jan; 465(1):18-22. PubMed ID: 10620699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of cardiac Na+ channels by batrachotoxin: effects on gating, kinetics, and local anesthetic binding.
    Wasserstrom JA; Liberty K; Kelly J; Santucci P; Myers M
    Biophys J; 1993 Jul; 65(1):386-95. PubMed ID: 8396458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of cardiac Na+ current by primaquine.
    Orta-Salazar G; Bouchard RA; Morales-Salgado F; Salinas-Stefanon EM
    Br J Pharmacol; 2002 Feb; 135(3):751-63. PubMed ID: 11834623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between veratridine reaction dynamics and macroscopic Na current in single cardiac cells.
    Zong XG; Dugas M; Honerjäger P
    J Gen Physiol; 1992 May; 99(5):683-97. PubMed ID: 1318938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BTX modification of Na channels in squid axons. I. State dependence of BTX action.
    Tanguy J; Yeh JZ
    J Gen Physiol; 1991 Mar; 97(3):499-519. PubMed ID: 1645393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of veratridine on sodium currents and fluxes.
    Ulbricht W
    Rev Physiol Biochem Pharmacol; 1998; 133():1-54. PubMed ID: 9600010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin.
    Valenzuela C; Bennett PB
    Biophys J; 1994 Jul; 67(1):161-71. PubMed ID: 7918983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationship for D-ring derivatives of grayanotoxin in the squid giant axon.
    Yakehiro M; Yamamoto S; Baba N; Nakajima S; Iwasa J; Seyama I
    J Pharmacol Exp Ther; 1993 Jun; 265(3):1328-32. PubMed ID: 8389862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.