These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 11484046)
1. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Saika-Voivod I; Poole PH; Sciortino F Nature; 2001 Aug; 412(6846):514-7. PubMed ID: 11484046 [TBL] [Abstract][Full Text] [Related]
2. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954 [TBL] [Abstract][Full Text] [Related]
3. A thermodynamic connection to the fragility of glass-forming liquids. Martinez LM; Angell CA Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947 [TBL] [Abstract][Full Text] [Related]
4. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV; Angell CA J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of supercooled water in confined geometry. Bergman R; Swenson J Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841 [TBL] [Abstract][Full Text] [Related]
6. Free energy and configurational entropy of liquid silica: fragile-to-strong crossover and polyamorphism. Saika-Voivod I; Sciortino F; Poole PH Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041503. PubMed ID: 15169021 [TBL] [Abstract][Full Text] [Related]
9. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Sastry S Nature; 2001 Jan; 409(6817):164-7. PubMed ID: 11196634 [TBL] [Abstract][Full Text] [Related]
10. Poisson's ratio and the fragility of glass-forming liquids. Novikov VN; Sokolov AP Nature; 2004 Oct; 431(7011):961-3. PubMed ID: 15496916 [TBL] [Abstract][Full Text] [Related]
11. Computing the viscosity of supercooled liquids. Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777 [TBL] [Abstract][Full Text] [Related]
12. Formation of glasses from liquids and biopolymers. Angell CA Science; 1995 Mar; 267(5206):1924-35. PubMed ID: 17770101 [TBL] [Abstract][Full Text] [Related]
13. Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy. Moreno AJ; Saika-Voivod I; Zaccarelli E; La Nave E; Buldyrev SV; Tartaglia P; Sciortino F J Chem Phys; 2006 May; 124(20):204509. PubMed ID: 16774355 [TBL] [Abstract][Full Text] [Related]
14. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity. Matsuoka H J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018 [TBL] [Abstract][Full Text] [Related]
15. Two-Gaussian excitations model for the glass transition. Matyushov DV; Angell CA J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743 [TBL] [Abstract][Full Text] [Related]
16. First-order transition in confined water between high-density liquid and low-density amorphous phases. Koga K; Tanaka H; Zeng XC Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739 [TBL] [Abstract][Full Text] [Related]
17. Insights into phases of liquid water from study of its unusual glass-forming properties. Angell CA Science; 2008 Feb; 319(5863):582-7. PubMed ID: 18239117 [TBL] [Abstract][Full Text] [Related]
18. Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water. Mishima O J Chem Phys; 2007 Jun; 126(24):244507. PubMed ID: 17614564 [TBL] [Abstract][Full Text] [Related]
19. Interfacial effects on vitrification of confined glass-forming liquids. Trofymluk O; Levchenko AA; Navrotsky A J Chem Phys; 2005 Nov; 123(19):194509. PubMed ID: 16321102 [TBL] [Abstract][Full Text] [Related]