These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11484181)

  • 1. Effect of material geometry on cartilagenous tissue formation in vitro.
    Bhardwaj T; Pilliar RM; Grynpas MD; Kandel RA
    J Biomed Mater Res; 2001 Nov; 57(2):190-9. PubMed ID: 11484181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocyte interactions with porous titanium alloy and calcium polyphosphate substrates.
    Ciolfi VJ; Pilliar R; McCulloch C; Wang SX; Grynpas MD; Kandel RA
    Biomaterials; 2003 Nov; 24(26):4761-70. PubMed ID: 14530073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Biomed Mater Res; 2002 Dec; 62(3):323-30. PubMed ID: 12209917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro formation of mineralized cartilagenous tissue by articular chondrocytes.
    Kandel RA; Boyle J; Gibson G; Cruz T; Speagle M
    In Vitro Cell Dev Biol Anim; 1997 Mar; 33(3):174-81. PubMed ID: 9112125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro.
    Yu H; Grynpas M; Kandel RA
    Biomaterials; 1997 Nov; 18(21):1425-31. PubMed ID: 9375844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro.
    Boyle J; Luan B; Cruz TF; Kandel RA
    Osteoarthritis Cartilage; 1995 Jun; 3(2):117-25. PubMed ID: 7584317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts.
    Nuernberger S; Cyran N; Albrecht C; Redl H; VĂ©csei V; Marlovits S
    Biomaterials; 2011 Feb; 32(4):1032-40. PubMed ID: 21074264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface roughness and composition on costochondral chondrocytes is dependent on cell maturation state.
    Boyan BD; Lincks J; Lohmann CH; Sylvia VL; Cochran DL; Blanchard CR; Dean DD; Schwartz Z
    J Orthop Res; 1999 May; 17(3):446-57. PubMed ID: 10376736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes.
    Yates KE; Allemann F; Glowacki J
    Cell Tissue Bank; 2005; 6(1):45-54. PubMed ID: 15735900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering.
    Mouw JK; Case ND; Guldberg RE; Plaas AH; Levenston ME
    Osteoarthritis Cartilage; 2005 Sep; 13(9):828-36. PubMed ID: 16006153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition.
    Matsiko A; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):486-97. PubMed ID: 25203687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage.
    Miralles G; Baudoin R; Dumas D; Baptiste D; Hubert P; Stoltz JF; Dellacherie E; Mainard D; Netter P; Payan E
    J Biomed Mater Res; 2001 Nov; 57(2):268-78. PubMed ID: 11484190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.
    Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM
    Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Hong J; Kandel RA
    J Bone Joint Surg Am; 2003; 85-A Suppl 2():101-5. PubMed ID: 12721351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method.
    Masuda K; Pfister BE; Sah RL; Thonar EJ
    Osteoarthritis Cartilage; 2006 Apr; 14(4):384-91. PubMed ID: 16324853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.