BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11484477)

  • 1. Prevention of rhodanese aggregation by the chaperonin GroEL.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():111-5. PubMed ID: 11484477
    [No Abstract]   [Full Text] [Related]  

  • 2. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 3. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES.
    Horowitz PM
    Methods Mol Biol; 1995; 40():361-8. PubMed ID: 7633531
    [No Abstract]   [Full Text] [Related]  

  • 6. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATPase activity of chaperonin GroEL is highly stimulated at elevated temperatures.
    Mendoza JA; Warren T; Dulin P
    Biochem Biophys Res Commun; 1996 Dec; 229(1):271-4. PubMed ID: 8954117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation.
    Bhattacharyya AM; Horowitz PM
    J Biol Chem; 2001 Aug; 276(31):28739-43. PubMed ID: 11397797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme.
    Kramer G; Ramachandiran V; Horowitz P; Hardesty B
    Arch Biochem Biophys; 2001 Jan; 385(2):332-7. PubMed ID: 11368014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodanese folding is controlled by the partitioning of its folding intermediates.
    Gorovits BM; McGee WA; Horowitz PM
    Biochim Biophys Acta; 1998 Jan; 1382(1):120-8. PubMed ID: 9507086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of oxidized chaperonin GroEL with an unfolded protein at low temperatures.
    Melkani GC; Sielaff R; Zardeneta G; Mendoza JA
    Biosci Rep; 2012 Jun; 32(3):299-303. PubMed ID: 22273181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the chaperonin activity of GroEL at heat-shock temperature.
    Melkani GC; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1375-85. PubMed ID: 15833270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(20):13044-9. PubMed ID: 1677004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein.
    Smith KE; Voziyan PA; Fisher MT
    J Biol Chem; 1998 Oct; 273(44):28677-81. PubMed ID: 9786862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1995 Mar; 270(13):7335-40. PubMed ID: 7706275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of rhodanese intermediates during thermal inactivation and their implications for the mechanism of protein aggregation.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Jan; 41(1):422-9. PubMed ID: 11772042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boxing day.
    Gagescu R
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):874-5. PubMed ID: 11733765
    [No Abstract]   [Full Text] [Related]  

  • 19. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation.
    Melkani GC; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2002 Jun; 294(4):893-9. PubMed ID: 12061791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.