BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11484478)

  • 21. Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study.
    Galan A; Sot B; Llorca O; Carrascosa JL; Valpuesta JM; Muga A
    J Biol Chem; 2001 Jan; 276(2):957-64. PubMed ID: 11020386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme.
    Kramer G; Ramachandiran V; Horowitz P; Hardesty B
    Arch Biochem Biophys; 2001 Jan; 385(2):332-7. PubMed ID: 11368014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assay of chaperonin-assisted refolding of citrate synthase.
    Steede NK; Temkin SL; Landry SJ
    Methods Mol Biol; 2000; 140():133-8. PubMed ID: 11484480
    [No Abstract]   [Full Text] [Related]  

  • 25. Phosphofructokinase interacts with molecular chaperonins GroEL and GroES.
    Melegh B; Minami Y
    Acta Biol Hung; 1997; 48(4):399-407. PubMed ID: 9847453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP.
    Motojima F; Yoshida M
    J Biol Chem; 2003 Jul; 278(29):26648-54. PubMed ID: 12736270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation.
    Bhattacharyya AM; Horowitz PM
    J Biol Chem; 2001 Aug; 276(31):28739-43. PubMed ID: 11397797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release.
    Mizobata T; Kawagoe M; Hongo K; Nagai J; Kawata Y
    J Biol Chem; 2000 Aug; 275(33):25600-7. PubMed ID: 10837467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1997 Mar; 405(2):195-9. PubMed ID: 9089290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release of both native and non-native proteins from a cis-only GroEL ternary complex.
    Burston SG; Weissman JS; Farr GW; Fenton WA; Horwich AL
    Nature; 1996 Sep; 383(6595):96-9. PubMed ID: 8779722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Back to GroEL-Assisted Protein Folding: GroES Binding-Induced Displacement of Denatured Proteins from GroEL to Bulk Solution.
    Marchenkov V; Gorokhovatsky A; Marchenko N; Ivashina T; Semisotnov G
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31968530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of the GroESLx chaperonins from the symbiotic X-bacteria in Amoeba proteus.
    Jung GH; Ahn TI
    Protein Expr Purif; 2001 Dec; 23(3):459-67. PubMed ID: 11722184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
    Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M
    Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction.
    Ranson NA; Burston SG; Clarke AR
    J Mol Biol; 1997 Mar; 266(4):656-64. PubMed ID: 9102459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boxing day.
    Gagescu R
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):874-5. PubMed ID: 11733765
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.