BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11484480)

  • 41. Effects of divalent cations on encapsulation and release in the GroEL-assisted folding.
    Okuda H; Sakuhana C; Yamamoto R; Kawai R; Mizukami Y; Matsuda K
    Biometals; 2007 Dec; 20(6):903-10. PubMed ID: 17242865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FTIR spectroscopic analysis of the structure and stability of pig citrate synthase.
    Severcan F; Haris PI; Heaton RJ; Chapman D
    Biochem Soc Trans; 1996 May; 24(2):299S. PubMed ID: 8736957
    [No Abstract]   [Full Text] [Related]  

  • 43. Boxing day.
    Gagescu R
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):874-5. PubMed ID: 11733765
    [No Abstract]   [Full Text] [Related]  

  • 44. Determination of chaperonin activity in vivo.
    van der Vies SM; Lund PA
    Methods Mol Biol; 2000; 140():75-96. PubMed ID: 11484496
    [No Abstract]   [Full Text] [Related]  

  • 45. Chaperonins govern growth of Escherichia coli at low temperatures.
    Ferrer M; Chernikova TN; Yakimov MM; Golyshin PN; Timmis KN
    Nat Biotechnol; 2003 Nov; 21(11):1266-7. PubMed ID: 14595348
    [No Abstract]   [Full Text] [Related]  

  • 46. Cycloamylose as an efficient artificial chaperone for protein refolding.
    Machida S; Ogawa S; Xiaohua S; Takaha T; Fujii K; Hayashi K
    FEBS Lett; 2000 Dec; 486(2):131-5. PubMed ID: 11113453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hinge-bending motion in citrate synthase arising from normal mode calculations.
    Marques O; Sanejouand YH
    Proteins; 1995 Dec; 23(4):557-60. PubMed ID: 8749851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Considerations of citrate synthase in procaryotes and eucaryotes. The case of yeast citrate synthase; the absence of sulphydryl groups and reactivity with sulphydryl reagents-an apparent contradiction.
    Greenblatt GA; Sarkissian IV
    Subcell Biochem; 1974 Sep; 3(3):249-56. PubMed ID: 4612883
    [No Abstract]   [Full Text] [Related]  

  • 49. Monitoring protein conformation along the pathway of chaperonin-assisted folding.
    Sharma S; Chakraborty K; Müller BK; Astola N; Tang YC; Lamb DC; Hayer-Hartl M; Hartl FU
    Cell; 2008 Apr; 133(1):142-53. PubMed ID: 18394994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus.
    Guidry J; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2004 Apr; 317(1):176-80. PubMed ID: 15047164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of Tetrahymena hsp60 as a 14-nm filament protein/citrate synthase-binding protein and its possible involvement in the oral apparatus formation.
    Takeda T; Yoshihama I; Numata O
    Genes Cells; 2001 Feb; 6(2):139-49. PubMed ID: 11260259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Refolding with a piece of the ring.
    King J
    Nat Biotechnol; 1997 Jun; 15(6):514-5. PubMed ID: 9264880
    [No Abstract]   [Full Text] [Related]  

  • 53. Affinity purification, overexpression, and characterization of chaperonin 10 homologues synthesized with and without N-terminal acetylation.
    Ryan MT; Naylor DJ; Hoogenraad NJ; Høj PB
    J Biol Chem; 1995 Sep; 270(37):22037-43. PubMed ID: 7665625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide.
    Yoshimi T; Hongo K; Mizobata T; Kawata Y
    J Biochem; 2006 Mar; 139(3):407-19. PubMed ID: 16567406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct refolding of inclusion bodies using reversed micelles.
    Sakono M; Kawashima YM; Ichinose H; Maruyama T; Kamiya N; Goto M
    Biotechnol Prog; 2004; 20(6):1783-7. PubMed ID: 15575712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The N terminus of the head protein of T4 bacteriophage directs proteins to the GroEL chaperonin.
    Snyder L; Tarkowski HJ
    J Mol Biol; 2005 Jan; 345(2):375-86. PubMed ID: 15571729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue.
    Xu X; Kanbara K; Azakami H; Kato A
    J Biochem; 2004 May; 135(5):615-8. PubMed ID: 15173200
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry.
    van Duijn E; Bakkes PJ; Heeren RM; van den Heuvel RH; van Heerikhuizen H; van der Vies SM; Heck AJ
    Nat Methods; 2005 May; 2(5):371-6. PubMed ID: 15846365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers.
    Viitanen PV; Lorimer G; Bergmeier W; Weiss C; Kessel M; Goloubinoff P
    Methods Enzymol; 1998; 290():203-17. PubMed ID: 9534164
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.