BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11484765)

  • 21. Sinoatrial node pacemaker activity requires Ca(2+)/calmodulin-dependent protein kinase II activation.
    Vinogradova TM; Zhou YY; Bogdanov KY; Yang D; Kuschel M; Cheng H; Xiao RP
    Circ Res; 2000 Oct; 87(9):760-7. PubMed ID: 11055979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cocaine activates calcium/calmodulin kinase II and causes cardiomyocyte hypertrophy.
    Henning RJ; Cuevas J
    J Cardiovasc Pharmacol; 2006 Jul; 48(1):802-13. PubMed ID: 16891908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes.
    Choi HS; Trafford AW; Orchard CH; Eisner DA
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):661-8. PubMed ID: 11118496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of sarcoplasmic reticulum calcium release during calcium loading in isolated rat ventricular myocytes.
    Spencer CI; Berlin JR
    J Physiol; 1995 Oct; 488 ( Pt 2)(Pt 2):267-79. PubMed ID: 8568669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart.
    Sánchez JA; García MC; Sharma VK; Young KC; Matlib MA; Sheu SS
    J Physiol; 2001 Oct; 536(Pt 2):387-96. PubMed ID: 11600674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitation-contraction coupling in single guinea-pig ventricular myocytes exposed to hydrogen peroxide.
    Goldhaber JI; Liu E
    J Physiol; 1994 May; 477(Pt 1):135-47. PubMed ID: 8071880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence.
    Fan GH; Wang LZ; Qiu HC; Ma L; Pei G
    Mol Pharmacol; 1999 Jul; 56(1):39-45. PubMed ID: 10385682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca(2+)/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na(+)/H(+) exchanger activation.
    Vila-Petroff M; Mundiña-Weilenmann C; Lezcano N; Snabaitis AK; Huergo MA; Valverde CA; Avkiran M; Mattiazzi A
    J Mol Cell Cardiol; 2010 Jul; 49(1):106-12. PubMed ID: 20026127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Increases Small-Conductance Ca2+-Activated K+ Current in Patients with Chronic Atrial Fibrillation.
    Fan X; Yu Y; Lan H; Ou X; Yang L; Li T; Cao J; Zeng X; Li M
    Med Sci Monit; 2018 May; 24():3011-3023. PubMed ID: 29737974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+/calmodulin-dependent protein kinase: a key component in the contractile recovery from acidosis.
    Mattiazzi A; Vittone L; Mundiña-Weilenmann C
    Cardiovasc Res; 2007 Mar; 73(4):648-56. PubMed ID: 17222810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation.
    Neef S; Dybkova N; Sossalla S; Ort KR; Fluschnik N; Neumann K; Seipelt R; Schöndube FA; Hasenfuss G; Maier LS
    Circ Res; 2010 Apr; 106(6):1134-44. PubMed ID: 20056922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells.
    Aromolaran AA; Blatter LA
    Am J Physiol Cell Physiol; 2005 Dec; 289(6):C1426-36. PubMed ID: 16093279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias.
    Gonano LA; Sepúlveda M; Rico Y; Kaetzel M; Valverde CA; Dedman J; Mattiazzi A; Vila Petroff M
    Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):947-57. PubMed ID: 22009705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of intracellular pH on spontaneous Ca2+ sparks in rat ventricular myocytes.
    Balnave CD; Vaughan-Jones RD
    J Physiol; 2000 Oct; 528 Pt 1(Pt 1):25-37. PubMed ID: 11018103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular mechanisms of the acute increase of glutamate release induced by nerve growth factor in rat cerebral cortex.
    Raiteri L; Giovedì S; Benfenati F; Raiteri M; Bonanno G
    Neuropharmacology; 2003 Mar; 44(3):390-402. PubMed ID: 12696558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the protein kinase A inhibitor H-89 on Ca2+ regulation in isolated ferret ventricular myocytes.
    Hussain M; Drago GA; Bhogal M; Colyer J; Orchard CH
    Pflugers Arch; 1999 Mar; 437(4):529-37. PubMed ID: 10089565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calmodulin kinase II initiates arrhythmogenicity during metabolic acidification in murine hearts.
    Pedersen TH; Gurung IS; Grace A; Huang CL
    Acta Physiol (Oxf); 2009 Sep; 197(1):13-25. PubMed ID: 19416122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular application of calmidazolium increases Ca2+ current through activation of protein kinase A in cultured vascular smooth muscle cells.
    Sunagawa M; Yokoshiki H; Seki T; Sperelakis N
    J Vasc Res; 1998; 35(5):303-9. PubMed ID: 9789110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.