These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11484774)

  • 1. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres.
    Walsh B; Tonkonogi M; Sahlin K
    Pflugers Arch; 2001 Jun; 442(3):420-5. PubMed ID: 11484774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress.
    Tonkonogi M; Walsh B; Svensson M; Sahlin K
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.
    Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G
    J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.
    Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K
    Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial oxidative function in human saponin-skinned muscle fibres: effects of prolonged exercise.
    Tonkonogi M; Harris B; Sahlin K
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):279-86. PubMed ID: 9625884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males.
    Shepherd SO; Cocks M; Tipton KD; Witard OC; Ranasinghe AM; Barker TA; Wagenmakers AJ; Shaw CS
    Exp Physiol; 2014 Jun; 99(6):894-908. PubMed ID: 24706192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans.
    Tonkonogi M; Fernström M; Walsh B; Ji LL; Rooyackers O; Hammarqvist F; Wernerman J; Sahlin K
    Pflugers Arch; 2003 May; 446(2):261-9. PubMed ID: 12684796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status.
    Tonkonogi M; Sahlin K
    Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate.
    Bakkman L; Sahlin K; Holmberg HC; Tonkonogi M
    Acta Physiol (Oxf); 2007 Jul; 190(3):243-51. PubMed ID: 17521315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle.
    Dohlmann TL; Hindsø M; Dela F; Helge JW; Larsen S
    Physiol Rep; 2018 Sep; 6(18):e13857. PubMed ID: 30221839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.
    Venditti P; Di Meo S
    Int J Sports Med; 1997 Oct; 18(7):497-502. PubMed ID: 9414071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moderate-intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men.
    Majerczak J; Grandys M; Duda K; Zakrzewska A; Balcerczyk A; Kolodziejski L; Szymoniak-Chochol D; Smolenski RT; Bartosz G; Chlopicki S; Zoladz JA
    Exp Physiol; 2017 Jan; 102(1):70-85. PubMed ID: 27748983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training.
    Salvadego D; Domenis R; Lazzer S; Porcelli S; Rittweger J; Rizzo G; Mavelli I; Simunic B; Pisot R; Grassi B
    J Appl Physiol (1985); 2013 Jun; 114(11):1527-35. PubMed ID: 23519233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle mitochondria exhibit decreased pyruvate oxidation capacity and increased ROS emission during surgery-induced acute insulin resistance.
    Hagve M; Gjessing PF; Fuskevåg OM; Larsen TS; Irtun Ø
    Am J Physiol Endocrinol Metab; 2015 Apr; 308(8):E613-20. PubMed ID: 25670828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of 5-week moderate intensity endurance training on the oxidative stress, muscle specific uncoupling protein (UCP3) and superoxide dismutase (SOD2) contents in vastus lateralis of young, healthy men.
    Majerczak J; Rychlik B; Grzelak A; Grzmil P; Karasinski J; Pierzchalski P; Pulaski L; Bartosz G; Zoladz JA
    J Physiol Pharmacol; 2010 Dec; 61(6):743-51. PubMed ID: 21224506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans.
    Pesta D; Hoppel F; Macek C; Messner H; Faulhaber M; Kobel C; Parson W; Burtscher M; Schocke M; Gnaiger E
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle.
    Zoll J; Sanchez H; N'Guessan B; Ribera F; Lampert E; Bigard X; Serrurier B; Fortin D; Geny B; Veksler V; Ventura-Clapier R; Mettauer B
    J Physiol; 2002 Aug; 543(Pt 1):191-200. PubMed ID: 12181291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy.
    Brizendine JT; Ryan TE; Larson RD; McCully KK
    Med Sci Sports Exerc; 2013 May; 45(5):869-75. PubMed ID: 23247709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients.
    Zoll J; N'Guessan B; Ribera F; Lampert E; Fortin D; Veksler V; Bigard X; Geny B; Lonsdorfer J; Ventura-Clapier R; Mettauer B
    J Am Coll Cardiol; 2003 Jul; 42(1):126-32. PubMed ID: 12849672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.