These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11484776)

  • 1. Staircase-like potentiation of calcium release in mouse myotubes during repetitive short-term application of threshold caffeine.
    Lange PS; Rüdel R; Taylor SR; Föhr KJ
    Pflugers Arch; 2001 Jun; 442(3):435-42. PubMed ID: 11484776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of excitation-contraction coupling by 4-chloro-m-cresol in voltage-clamped cut muscle fibres of the frog (R. pipiens).
    Struk A; Melzer W
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):221-31. PubMed ID: 9925891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low serum promotes maturation of excitation-contraction coupling in myotubes.
    Suda N; Dirksen RT; Gonzalez A; Beam KG
    Pflugers Arch; 2000 Mar; 439(5):555-8. PubMed ID: 10764214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially segregated control of Ca2+ release in developing skeletal muscle of mice.
    Shirokova N; Shirokov R; Rossi D; González A; Kirsch WG; García J; Sorrentino V; Ríos E
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):483-95. PubMed ID: 10581317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):317-39. PubMed ID: 8782099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones.
    Kano M; Garaschuk O; Verkhratsky A; Konnerth A
    J Physiol; 1995 Aug; 487(1):1-16. PubMed ID: 7473240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):341-56. PubMed ID: 8782100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle.
    Neelands TR; Herson PS; Jacobson D; Adelman JP; Maylie J
    J Physiol; 2001 Oct; 536(Pt 2):397-407. PubMed ID: 11600675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the ryanodine receptor sarcoplasmic reticular Ca2+ channel in skinned fibers of fast- and slow-twitch skeletal muscles from rabbits.
    Su JY; Chang YI
    Pflugers Arch; 1995 Jul; 430(3):358-64. PubMed ID: 7491259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local calcium release in mammalian skeletal muscle.
    Shirokova N; García J; Ríos E
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):377-84. PubMed ID: 9763628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeine activates a Ca(2+)-permeable, nonselective cation channel in smooth muscle cells.
    Guerrero A; Fay FS; Singer JJ
    J Gen Physiol; 1994 Aug; 104(2):375-94. PubMed ID: 7807054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FK506-binding protein (FKBP12) regulates ryanodine receptor-evoked Ca2+ release in colonic but not aortic smooth muscle.
    MacMillan D; Currie S; McCarron JG
    Cell Calcium; 2008 Jun; 43(6):539-49. PubMed ID: 17950843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-induced calcium release in skeletal muscle.
    Endo M
    Physiol Rev; 2009 Oct; 89(4):1153-76. PubMed ID: 19789379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ryanodine-sensitive calcium store in ascidian eggs monitored by whole-cell patch-clamp recordings.
    Arnoult C; Albrieux M; Antoine AF; Grunwald D; Marty I; Villaz M
    Cell Calcium; 1997 Feb; 21(2):93-101. PubMed ID: 9132300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle.
    Fryer MW; Stephenson DG
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):357-70. PubMed ID: 8782101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres.
    Chawla S; Skepper JN; Hockaday AR; Huang CL
    J Physiol; 2001 Oct; 536(Pt 2):351-9. PubMed ID: 11600671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release.
    Dietze B; Henke J; Eichinger HM; Lehmann-Horn F; Melzer W
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):507-14. PubMed ID: 10922003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat.
    Hashimoto T; Ishii T; Ohmori H
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):611-27. PubMed ID: 9003548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.