These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11484940)

  • 1. Centrifugally-spun polyhydroxybutyrate fibres: effect of process solvent on structure, morphology and cell response.
    Foster LJ; Davies SM; Ti BJ
    J Biomater Sci Polym Ed; 2001; 12(3):317-36. PubMed ID: 11484940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR; Coombes AG
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of macrophages with fibrous materials in vitro.
    Bernatchez SF; Parks PJ; Gibbons DF
    Biomaterials; 1996 Nov; 17(21):2077-86. PubMed ID: 8902241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale characterisation of single synthetic fibres: Surface morphology and nanomechanical properties.
    Gubała D; Harniman R; Eloi JC; Wąsik P; Wermeille D; Sun L; Robles E; Chen M; Briscoe WH
    J Colloid Interface Sci; 2020 Jul; 571():398-411. PubMed ID: 32247192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chemical and physical characteristics and toxicology of man-made mineral fibers].
    Foà V; Basilico S
    Med Lav; 1999; 90(1):10-52. PubMed ID: 10339953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold.
    Ellis MJ; Chaudhuri JB
    Biotechnol Bioeng; 2007 Jan; 96(1):177-87. PubMed ID: 16894632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic assay of hydroxybutyric acid monomer formation in poly(beta-hydroxybutyrate) degradation studies.
    Foster LJ; Tighe BJ
    Biomaterials; 1995 Mar; 16(4):341-3. PubMed ID: 7772675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrifugally spun PHBV micro and nanofibres.
    Upson SJ; O'Haire T; Russell SJ; Dalgarno K; Ferreira AM
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():190-195. PubMed ID: 28482516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.
    Gossla E; Tonndorf R; Bernhardt A; Kirsten M; Hund RD; Aibibu D; Cherif C; Gelinsky M
    Acta Biomater; 2016 Oct; 44():267-76. PubMed ID: 27544815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions.
    English A; Azeem A; Gaspar DA; Keane K; Kumar P; Keeney M; Rooney N; Pandit A; Zeugolis DI
    J Mater Sci Mater Med; 2012 Jan; 23(1):137-48. PubMed ID: 22105221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies.
    Ruiter FAA; Alexander C; Rose FRAJ; Segal JI
    Biomed Mater; 2017 Sep; 12(5):055009. PubMed ID: 28643700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering.
    Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K
    J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne fibres in the norwegian silicon carbide industry.
    Skogstad A; Føreland S; Bye E; Eduard W
    Ann Occup Hyg; 2006 Apr; 50(3):231-40. PubMed ID: 16497830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone).
    Williamson MR; Chang HI; Coombes AG
    Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications.
    Huerta-Ángeles G; Knotková K; Knotek P; Židek O; Brandejsová M; Pokorný M; Vagnerová H; Roy I; Velebný V
    J Mater Sci Mater Med; 2018 Mar; 29(3):32. PubMed ID: 29546462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication.
    Mulky E; Yazgan G; Maniura-Weber K; Luginbuehl R; Fortunato G; Bühlmann-Popa AM
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():277-86. PubMed ID: 25491830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.