BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 11485310)

  • 1. Analysis of type-I and type-II RUNX2 protein expression in osteoblasts.
    Sudhakar S; Katz MS; Elango N
    Biochem Biophys Res Commun; 2001 Aug; 286(1):74-9. PubMed ID: 11485310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational regulation is a control point in RUNX2/Cbfa1 gene expression.
    Sudhakar S; Li Y; Katz MS; Elango N
    Biochem Biophys Res Commun; 2001 Nov; 289(2):616-22. PubMed ID: 11716520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation and expression of an alternative 3' exon of Runx2 encoding a novel proline-rich C-terminal domain.
    Terry A; Kilbey A; Vaillant F; Stewart M; Jenkins A; Cameron E; Neil JC
    Gene; 2004 Jul; 336(1):115-25. PubMed ID: 15225881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts' response.
    Costessi A; Pines A; D'Andrea P; Romanello M; Damante G; Cesaratto L; Quadrifoglio F; Moro L; Tell G
    Bone; 2005 Mar; 36(3):418-32. PubMed ID: 15777650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel protein/DNA interactions within the promoter of the bone-related transcription factor Runx2/Cbfa1.
    Drissi H; Pouliot A; Stein JL; van Wijnen AJ; Stein GS; Lian JB
    J Cell Biochem; 2002; 86(2):403-12. PubMed ID: 12112009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter.
    Drissi H; Pouliot A; Koolloos C; Stein JL; Lian JB; Stein GS; van Wijnen AJ
    Exp Cell Res; 2002 Apr; 274(2):323-33. PubMed ID: 11900492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two of four alternatively spliced isoforms of RUNX2 control osteocalcin gene expression in human osteoblast cells.
    Makita N; Suzuki M; Asami S; Takahata R; Kohzaki D; Kobayashi S; Hakamazuka T; Hozumi N
    Gene; 2008 Apr; 413(1-2):8-17. PubMed ID: 18321663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-binding factor beta interacts with Runx2 and is required for skeletal development.
    Yoshida CA; Furuichi T; Fujita T; Fukuyama R; Kanatani N; Kobayashi S; Satake M; Takada K; Komori T
    Nat Genet; 2002 Dec; 32(4):633-8. PubMed ID: 12434152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function.
    Brubaker KD; Vessella RL; Brown LG; Corey E
    Prostate; 2003 Jun; 56(1):13-22. PubMed ID: 12746842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines.
    Liu T; Gao Y; Sakamoto K; Minamizato T; Furukawa K; Tsukazaki T; Shibata Y; Bessho K; Komori T; Yamaguchi A
    J Cell Physiol; 2007 Jun; 211(3):728-35. PubMed ID: 17226753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts.
    Viereck V; Siggelkow H; Tauber S; Raddatz D; Schutze N; Hüfner M
    J Cell Biochem; 2002; 86(2):348-56. PubMed ID: 12112004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of TGFbeta1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells.
    Sun L; Vitolo MI; Qiao M; Anglin IE; Passaniti A
    Oncogene; 2004 Jun; 23(27):4722-34. PubMed ID: 15107836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of regulator of G-protein signaling-2 (RGS-2) expression and function in osteoblastic cells.
    Thirunavukkarasu K; Halladay DL; Miles RR; Geringer CD; Onyia JE
    J Cell Biochem; 2002; 85(4):837-50. PubMed ID: 11968023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered Cbfa1 expression and biomineralization in an osteosarcoma cell line.
    Perinpanayagam H; Schneider G; Holtman K; Zaharias R; Stanford C
    J Orthop Res; 2004 Mar; 22(2):404-10. PubMed ID: 15013103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein.
    Lee KS; Hong SH; Bae SC
    Oncogene; 2002 Oct; 21(47):7156-63. PubMed ID: 12370805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive force stimulates the expression of osteogenesis-related transcription factors in ROS 17/2.8 cells.
    Yanagisawa M; Suzuki N; Mitsui N; Koyama Y; Otsuka K; Shimizu N
    Arch Oral Biol; 2008 Mar; 53(3):214-9. PubMed ID: 18054892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation potential of a mouse bone marrow stromal cell line.
    Allan EH; Ho PW; Umezawa A; Hata J; Makishima F; Gillespie MT; Martin TJ
    J Cell Biochem; 2003 Sep; 90(1):158-69. PubMed ID: 12938165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of osteoblast gene expression in intratypic osteosarcoma hybrid cells.
    Johnson-Pais TL; Leach RJ
    Exp Cell Res; 1995 Dec; 221(2):370-6. PubMed ID: 7493636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor.
    Maehata Y; Takamizawa S; Ozawa S; Kato Y; Sato S; Kubota E; Hata R
    Matrix Biol; 2006 Jan; 25(1):47-58. PubMed ID: 16266799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone loss induced by Runx2 over-expression in mice is blunted by osteoblastic over-expression of TIMP-1.
    Schiltz C; Prouillet C; Marty C; Merciris D; Collet C; de Vernejoul MC; Geoffroy V
    J Cell Physiol; 2010 Jan; 222(1):219-29. PubMed ID: 19780057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.