These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 11485312)
1. Regulation of protein kinase CKII by direct interaction with the C-terminal region of p47(phox). Kim YS; Lee JH; Park JW; Bae YS Biochem Biophys Res Commun; 2001 Aug; 286(1):87-93. PubMed ID: 11485312 [TBL] [Abstract][Full Text] [Related]
2. The highly basic ribosomal protein L41 interacts with the beta subunit of protein kinase CKII and stimulates phosphorylation of DNA topoisomerase IIalpha by CKII. Lee JH; Kim JM; Kim MS; Lee YT; Marshak DR; Bae YS Biochem Biophys Res Commun; 1997 Sep; 238(2):462-7. PubMed ID: 9299532 [TBL] [Abstract][Full Text] [Related]
3. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Mizuki K; Takeya R; Kuribayashi F; Nobuhisa I; Kohda D; Nunoi H; Takeshige K; Sumimoto H Arch Biochem Biophys; 2005 Dec; 444(2):185-94. PubMed ID: 16297854 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylated p40PHOX as a negative regulator of NADPH oxidase. Lopes LR; Dagher MC; Gutierrez A; Young B; Bouin AP; Fuchs A; Babior BM Biochemistry; 2004 Mar; 43(12):3723-30. PubMed ID: 15035643 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: conformation-dependent phosphorylation and modulation of oxidase activity. Park HS; Lee SM; Lee JH; Kim YS; Bae YS; Park JW Biochem J; 2001 Sep; 358(Pt 3):783-90. PubMed ID: 11535139 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation induces conformational changes in the leukocyte NADPH oxidase subunit p47(phox). Park HS; Kim IS; Park JW Biochem Biophys Res Commun; 1999 May; 259(1):38-42. PubMed ID: 10334912 [TBL] [Abstract][Full Text] [Related]
7. Properties of phagocyte NADPH oxidase p47-phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid. Peng G; Huang J; Boyd M; Kleinberg ME Biochem J; 2003 Jul; 373(Pt 1):221-9. PubMed ID: 12650641 [TBL] [Abstract][Full Text] [Related]
8. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Yuzawa S; Suzuki NN; Fujioka Y; Ogura K; Sumimoto H; Inagaki F Genes Cells; 2004 May; 9(5):443-56. PubMed ID: 15147273 [TBL] [Abstract][Full Text] [Related]
9. Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase. Tamura M; Kai T; Tsunawaki S; Lambeth JD; Kameda K Biochem Biophys Res Commun; 2000 Oct; 276(3):1186-90. PubMed ID: 11027608 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit. Bidwai AP; Reed JC; Glover CV Arch Biochem Biophys; 1993 Jan; 300(1):265-70. PubMed ID: 8424662 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of superoxide anion generation by CHS-111 via blockade of the p21-activated kinase, protein kinase B/Akt and protein kinase C signaling pathways in rat neutrophils. Chang LC; Lin RH; Huang LJ; Chang CS; Kuo SC; Wang JP Eur J Pharmacol; 2009 Aug; 615(1-3):207-17. PubMed ID: 19445920 [TBL] [Abstract][Full Text] [Related]
12. Interaction of the beta subunit of casein kinase II with the ribosomal protein L5. Kim JM; Cha JY; Marshak DR; Bae YS Biochem Biophys Res Commun; 1996 Sep; 226(1):180-6. PubMed ID: 8806611 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Dang PM; Morel F; Gougerot-Pocidalo MA; El Benna J Biochemistry; 2003 Apr; 42(15):4520-6. PubMed ID: 12693948 [TBL] [Abstract][Full Text] [Related]
14. p47(phox) PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton. Zhan Y; He D; Newburger PE; Zhou GW J Cell Biochem; 2004 Jul; 92(4):795-809. PubMed ID: 15211576 [TBL] [Abstract][Full Text] [Related]
15. C-terminal region of the cytosolic subunit p47(phox) is a primary target of conformational change during the activation of leukocyte NADPH oxidase. Lee JH; Lee KS; Chung T; Park J Biochimie; 2000 Aug; 82(8):727-32. PubMed ID: 11018289 [TBL] [Abstract][Full Text] [Related]
16. Evidence of true protein kinase CKII activity in mitochondria and its spermine-mediated translocation to inner membrane. Sarrouilhe D; Baudry M Cell Mol Biol (Noisy-le-grand); 1996 Mar; 42(2):189-97. PubMed ID: 8696255 [TBL] [Abstract][Full Text] [Related]
17. Protein kinase CKII: possible regulation by interaction with protein substrates. Plana M; Gil C; Molina E; Itarte E Cell Mol Biol Res; 1994; 40(5-6):455-61. PubMed ID: 7735319 [TBL] [Abstract][Full Text] [Related]
18. Human CD5 signaling and constitutive phosphorylation of C-terminal serine residues by casein kinase II. Calvo J; Vildà JM; Places L; Simarro M; Padilla O; Andreu D; Campbell KS; Aussel C; Lozano F J Immunol; 1998 Dec; 161(11):6022-9. PubMed ID: 9834084 [TBL] [Abstract][Full Text] [Related]
19. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Maehara Y; Miyano K; Sumimoto H Biochem Biophys Res Commun; 2009 Feb; 379(2):589-93. PubMed ID: 19116138 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Park JW; Bae YS Biochem Biophys Res Commun; 1999 Sep; 263(2):475-81. PubMed ID: 10491318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]