BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 11485572)

  • 41. The potential role of nitric oxide in substrate switching in eosinophil peroxidase.
    Galijasevic S; Proteasa G; Abdulhamid I; Abu-Soud HM
    Biochemistry; 2007 Jan; 46(2):406-15. PubMed ID: 17209551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thiols as peroxidase substrates.
    Svensson BE; Gräslund A; Ström G; Moldeus P
    Free Radic Biol Med; 1993 Feb; 14(2):167-75. PubMed ID: 8381104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uric acid and thiocyanate as competing substrates of lactoperoxidase.
    Seidel A; Parker H; Turner R; Dickerhof N; Khalilova IS; Wilbanks SM; Kettle AJ; Jameson GN
    J Biol Chem; 2014 Aug; 289(32):21937-49. PubMed ID: 24928513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of hypothiocyanite production during peroxidase-catalyzed oxidation of thiocyanate.
    Pruitt KM; Tenovuo J
    Biochim Biophys Acta; 1982 Jun; 704(2):204-14. PubMed ID: 7104367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders.
    Wu W; Chen Y; Hazen SL
    J Biol Chem; 1999 Sep; 274(36):25933-44. PubMed ID: 10464338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium.
    Sheng D; Gold MH
    Arch Biochem Biophys; 1997 Sep; 345(1):126-34. PubMed ID: 9281319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate.
    Rees MD; Maiocchi SL; Kettle AJ; Thomas SR
    Free Radic Biol Med; 2014 Jul; 72():91-103. PubMed ID: 24704973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Euphorbia peroxidase catalyzes thiocyanate oxidation in two different ways, the distal calcium ion playing an essential role.
    Pintus F; Spanò D; Bellelli A; Angelucci F; Scorciapino AM; Anedda R; Medda R; Floris G
    Biochemistry; 2010 Oct; 49(40):8739-47. PubMed ID: 20822104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and some properties of peroxidases of rat bone marrow.
    Kariya K; Lee E; Hirouchi M; Hosokawa M; Sayo H
    Biochim Biophys Acta; 1987 Jan; 911(1):95-101. PubMed ID: 3024734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes. III. The formation of aurocyanide by myeloperoxidase.
    Graham GG; Kettle AJ
    Biochem Pharmacol; 1998 Aug; 56(3):307-12. PubMed ID: 9744567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluoride inhibition of SCN- and Cl-peroxidase activities in whole saliva and of recombinant myeloperoxidase. Influence of pH and hydrogen peroxide concentration.
    van den Abbeele A; Pourtois M; Courtois P
    J Biol Buccale; 1992 Dec; 20(4):219-24. PubMed ID: 1339090
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral and kinetic studies on eosinophil peroxidase compounds I and II and their reaction with ascorbate and tyrosine.
    Furtmüller PG; Jantschko W; Regelsberger G; Obinger C
    Biochim Biophys Acta; 2001 Jul; 1548(1):121-8. PubMed ID: 11451445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.
    Savitsky PA; Gazaryan IG; Tishkov VI; Lagrimini LM; Ruzgas T; Gorton L
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):579-83. PubMed ID: 10359640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase.
    Bertozo LC; Zeraik ML; Ximenes VF
    Anal Biochem; 2017 Sep; 532():29-37. PubMed ID: 28587811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.
    Spalteholz H; Panasenko OM; Arnhold J
    Arch Biochem Biophys; 2006 Jan; 445(2):225-34. PubMed ID: 16111649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion.
    Aune TM; Thomas EL
    Eur J Biochem; 1977 Oct; 80(1):209-14. PubMed ID: 562752
    [No Abstract]   [Full Text] [Related]  

  • 57. Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants.
    Bonifay V; Barrett TJ; Pattison DI; Davies MJ; Hawkins CL; Ashby MT
    Arch Biochem Biophys; 2014 Dec; 564():1-11. PubMed ID: 25172223
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product.
    Smith AM; Morrison WL; Milham PJ
    Biochemistry; 1982 Aug; 21(18):4414-9. PubMed ID: 6289882
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peroxidase-catalyzed halide ion oxidation.
    Dunford HB
    Redox Rep; 2000; 5(4):169-71. PubMed ID: 10994869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen peroxide-dependent oxidation metabolism of 1-methyl-2-mercaptoimidazole (methimazole) catalysed by myeloperoxidase.
    Sayo H; Saito M
    Xenobiotica; 1991 Sep; 21(9):1217-24. PubMed ID: 1664996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.