These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11486415)

  • 1. Counting the number of disulfides and thiol groups in proteins and a novel approach for determining the local pKa for cysteine groups in proteins in vivo.
    Bellacchio E; McFarlane KL; Rompel A; Robblee JH; Cinco RM; Yachandra VK
    J Synchrotron Radiat; 2001 May; 8(3):1056-8. PubMed ID: 11486415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment.
    Yi MC; Khosla C
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():197-222. PubMed ID: 27023663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The basics of thiols and cysteines in redox biology and chemistry.
    Poole LB
    Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur K-edge X-ray absorption spectroscopy as an experimental probe for S-nitroso proteins.
    Szilagyi RK; Schwab DE
    Biochem Biophys Res Commun; 2005 Apr; 330(1):60-4. PubMed ID: 15781232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation.
    Sengupta S; Wehbe C; Majors AK; Ketterer ME; DiBello PM; Jacobsen DW
    J Biol Chem; 2001 Dec; 276(50):46896-904. PubMed ID: 11592966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin.
    Bocedi A; Fabrini R; Pedersen JZ; Federici G; Iavarone F; Martelli C; Castagnola M; Ricci G
    FEBS J; 2016 Nov; 283(22):4113-4127. PubMed ID: 27685835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.
    Mirzahosseini A; Somlyay M; Noszál B
    J Phys Chem B; 2015 Aug; 119(32):10191-7. PubMed ID: 26172610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.
    Leung BO; Jalilehvand F; Szilagyi RK
    J Phys Chem B; 2008 Apr; 112(15):4770-8. PubMed ID: 18351761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol disulfide exchange reactions in human serum albumin: the apparent paradox of the redox transitions of Cys
    Bocedi A; Cattani G; Stella L; Massoud R; Ricci G
    FEBS J; 2018 Sep; 285(17):3225-3237. PubMed ID: 30028086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of thiols and disulfides on protein stability.
    Trivedi MV; Laurence JS; Siahaan TJ
    Curr Protein Pept Sci; 2009 Dec; 10(6):614-25. PubMed ID: 19538140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XAS spectroscopy, sulfur, and the brew within blood cells from Ascidia ceratodes.
    Frank P; Hedman B; Hodgson KO
    J Inorg Biochem; 2014 Feb; 131():99-108. PubMed ID: 24333825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge.
    Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S
    Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.
    Takahashi N; Creighton TE
    Biochemistry; 1996 Jun; 35(25):8342-53. PubMed ID: 8679592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and Enzymology of Disulfide Cross-Linking in Proteins.
    Fass D; Thorpe C
    Chem Rev; 2018 Feb; 118(3):1169-1198. PubMed ID: 28699750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic thiol pKa effects on the folding rate of a disulfide containing protein.
    Gough JD; Gargano JM; Donofrio AE; Lees WJ
    Biochemistry; 2003 Oct; 42(40):11787-97. PubMed ID: 14529290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.