These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 11487116)
1. Stability of enhanced biological phosphorus removal and composition of polyphosphate granules. Schönborn C; Bauer HD; Röske I Water Res; 2001 Sep; 35(13):3190-6. PubMed ID: 11487116 [TBL] [Abstract][Full Text] [Related]
2. The Composition and Implications of Polyphosphate-Metal in Enhanced Biological Phosphorus Removal Systems. Li Y; Rahman SM; Li G; Fowle W; Nielsen PH; Gu AZ Environ Sci Technol; 2019 Feb; 53(3):1536-1544. PubMed ID: 30589545 [TBL] [Abstract][Full Text] [Related]
3. Biologically induced phosphorus precipitation in aerobic granular sludge process. Angela M; Béatrice B; Mathieu S Water Res; 2011 Jun; 45(12):3776-86. PubMed ID: 21616518 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous recovery of phosphorus and potassium as magnesium potassium phosphate from synthetic sewage sludge effluent. Nakao S; Nishio T; Kanjo Y Environ Technol; 2017 Oct; 38(19):2416-2426. PubMed ID: 27882824 [TBL] [Abstract][Full Text] [Related]
5. [Effect of Influent Ammonia Concentration on a Biological Phosphorus Removal Granules System]. Li D; Cao MZ; Guo YZ; Mei N; Li S; Zhang J Huan Jing Ke Xue; 2019 Mar; 40(3):1360-1366. PubMed ID: 31087985 [TBL] [Abstract][Full Text] [Related]
6. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Wang DB; Li XM; Yang Q; Zeng GM; Liao DX; Zhang J Bioresour Technol; 2008 Sep; 99(13):5466-73. PubMed ID: 18082396 [TBL] [Abstract][Full Text] [Related]
7. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Wang Y; Peng Y; Stephenson T Bioresour Technol; 2009 Jul; 100(14):3506-12. PubMed ID: 19324544 [TBL] [Abstract][Full Text] [Related]
8. [Characteristics and affecting factors of denitrifying phosphorus removal in two-sludge sequencing batch reactor]. Wang YY; Peng YZ; Yin FF; Li J; Zhang YK Huan Jing Ke Xue; 2008 Jun; 29(6):1526-32. PubMed ID: 18763495 [TBL] [Abstract][Full Text] [Related]
9. Optimized hydraulic retention time for phosphorus and COD removal from synthetic domestic sewage with granules in a continuous-flow reactor. Li D; Lv Y; Cao M; Zeng H; Zhang J Bioresour Technol; 2016 Sep; 216():1083-7. PubMed ID: 27265087 [TBL] [Abstract][Full Text] [Related]
10. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge. Huang W; Cai W; Huang H; Lei Z; Zhang Z; Tay JH; Lee DJ Water Res; 2015 Jan; 68():423-31. PubMed ID: 25462749 [TBL] [Abstract][Full Text] [Related]
11. Calibration and validation of an ASM3-based steady-state model for activated sludge systems--part II: Prediction of phosphorus removal. Koch G; Kühni M; Rieger L; Siegrist H Water Res; 2001 Jun; 35(9):2246-55. PubMed ID: 11358304 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of sludge reduction and phosphorus recovery efficiencies in a new advanced wastewater treatment system using denitrifying polyphosphate accumulating organisms. Suzuki Y; Kondo T; Nakagawa K; Tsuneda S; Hirata A; Shimizu Y; Inamori Y Water Sci Technol; 2006; 53(6):107-13. PubMed ID: 16749446 [TBL] [Abstract][Full Text] [Related]
13. Significance of design and operational variables in chemical phosphorus removal. Szabó A; Takács I; Murthy S; Daigger GT; Licskó I; Smith S Water Environ Res; 2008 May; 80(5):407-16. PubMed ID: 18605380 [TBL] [Abstract][Full Text] [Related]
14. Measuring metal and phosphorus speciation in P-rich anaerobic digesters. Carliell-Marquet CM; Wheatley AD Water Sci Technol; 2002; 45(10):305-12. PubMed ID: 12188563 [TBL] [Abstract][Full Text] [Related]
15. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system. Wang R; Peng Y; Cheng Z; Ren N Bioresour Technol; 2014 Oct; 169():307-312. PubMed ID: 25063972 [TBL] [Abstract][Full Text] [Related]
16. Enhanced biological phosphorus removal by granular sludge: from macro- to micro-scale. Wu CY; Peng YZ; Wang SY; Ma Y Water Res; 2010 Feb; 44(3):807-14. PubMed ID: 19913871 [TBL] [Abstract][Full Text] [Related]
17. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism. Barat R; Montoya T; Borrás L; Ferrer J; Seco A Water Res; 2008 Jul; 42(13):3415-24. PubMed ID: 18538819 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate. Xu K; Wang C; Liu H; Qian Y Chemosphere; 2011 Jun; 84(2):207-12. PubMed ID: 21596418 [TBL] [Abstract][Full Text] [Related]
19. [COD Requirement for Biological Phosphorus Removal Granule System Under Different Phosphorus Concentrations]. Li D; Cao MZ; Guo YZ; Mei N; Li S; Zhang J Huan Jing Ke Xue; 2018 Jul; 39(7):3247-3253. PubMed ID: 29962149 [TBL] [Abstract][Full Text] [Related]
20. [Cultivation of aerobic granules in a large pilot SBR with domestic sewage]. Tu X; Su BS; Kong YH; Zhu JR Huan Jing Ke Xue; 2010 Sep; 31(9):2118-23. PubMed ID: 21072933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]