These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 11488409)

  • 41. Antinociceptive effects of nefopam modulating serotonergic, adrenergic, and glutamatergic neurotransmission in the spinal cord.
    Chae JW; Kang DH; Li Y; Kim SH; Lee HG; Choi JI; Yoon MH; Kim WM
    Neurosci Lett; 2020 Jul; 731():135057. PubMed ID: 32450186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antinociceptive actions of intrathecal xylazine: interactions with spinal cord opioid pathways.
    Goodchild CS; Guo Z; Davies A; Gent JP
    Br J Anaesth; 1996 Apr; 76(4):544-51. PubMed ID: 8652328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Phentolamine antagonizes the effects of norepinephrine on the activity of pain-related neurons in the parafascicular nucleus of morphine-dependent rats].
    Jin XD; Guan YZ; Zhang SJ; Xu MY; Yue WJ
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Feb; 28(2):266-8. PubMed ID: 18250059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antinociceptive effects of intrathecal taurine and calcium in the mouse.
    Hornfeldt CS; Smullin DH; Schamber CD; Sun X; Larson AA
    Life Sci; 1992; 50(24):1925-34. PubMed ID: 1375974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain.
    McGaraughty S; Honore P; Wismer CT; Mikusa J; Zhu CZ; McDonald HA; Bianchi B; Faltynek CR; Jarvis MF
    Br J Pharmacol; 2005 Sep; 146(2):180-8. PubMed ID: 16041397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats.
    Iwamoto ET; Marion L
    J Pharmacol Exp Ther; 1993 Jul; 266(1):329-38. PubMed ID: 8101218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib.
    Lozano-Cuenca J; Castañeda-Hernández G; Granados-Soto V
    Eur J Pharmacol; 2005 Apr; 513(1-2):81-91. PubMed ID: 15878712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroacupuncture potentiates the antinociceptive effect of intrathecal endomorphin-1 in the rat formalin test.
    Hao S; Takahata O; Iwasaki H
    Neurosci Lett; 2000 Jun; 287(1):9-12. PubMed ID: 10841978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein kinase C is partly involved in c-fos protein expression of nocuously-activated neurons but may not in concomitant modulatory action through opioid receptors at the spinal level in rats.
    Nie H; Wang H; Zhang RX; Gao WC; Qiao JT
    Sheng Li Xue Bao; 2004 Aug; 56(4):455-60. PubMed ID: 15322678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effects of serotonin and norepinephrine on neuronal discharges of the nucleus tractus solitarii in medullary slices].
    Yang J; Bao J; Su DF
    Zhongguo Yao Li Xue Bao; 1992 Jan; 13(1):42-4. PubMed ID: 1605034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of intrathecal ketamine injection on protein kinase C expression in the spinal dorsal horn of rats with formalin-induced pain].
    YANG Y; GUO QL; ZOU WY; WANG E; YAN JQ
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Mar; 31(3):461-4. PubMed ID: 21421483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antinociceptive effects of methysergide in various pain models.
    Chung KM; Choi SS; Han KJ; Han EJ; Lee HK; Suh HW
    Pharmacology; 2003 Oct; 69(2):93-101. PubMed ID: 12928583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue.
    Oliveira MC; Pelegrini-da-Silva A; Parada CA; Tambeli CH
    Neuroscience; 2007 Mar; 145(2):708-14. PubMed ID: 17257768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peripheral and central antinociceptive action of Na+-K+-2Cl- cotransporter blockers on formalin-induced nociception in rats.
    Granados-Soto V; Arguelles CF; Alvarez-Leefmans FJ
    Pain; 2005 Mar; 114(1-2):231-8. PubMed ID: 15733649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATP-sensitive potassium channels and endogenous adenosine are involved in spinal antinociception produced by locus coeruleus stimulation.
    Han BF; Zhang C; Qi JS; Qiao JT
    Sheng Li Xue Bao; 2002 Apr; 54(2):139-44. PubMed ID: 11973594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new formalin test allowing simultaneous evaluation of cardiovascular and nociceptive responses.
    Culman J; Ritter S; Ohlendorf C; Haass M; Maser-Gluth C; Spitznagel H; Unger T
    Can J Physiol Pharmacol; 1997; 75(10-11):1203-11. PubMed ID: 9431444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Involvement of M3 muscarinic receptors of the spinal cord in formalin-induced nociception in mice.
    Honda K; Harada A; Takano Y; Kamiya H
    Brain Res; 2000 Mar; 859(1):38-44. PubMed ID: 10720613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.
    Yousofizadeh S; Tamaddonfard E; Farshid AA
    Eur J Pharmacol; 2015 Jul; 758():147-52. PubMed ID: 25864612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice.
    Tsuda M; Ueno S; Inoue K
    Br J Pharmacol; 1999 Dec; 128(7):1497-504. PubMed ID: 10602329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validation of a simple automated movement detection system for formalin test in rats.
    Xie YF; Wang J; Huo FQ; Jia H; Tang JS
    Acta Pharmacol Sin; 2005 Jan; 26(1):39-45. PubMed ID: 15659112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.