These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 11488483)

  • 1. Monochromatic aberrations of the human eye in a large population.
    Porter J; Guirao A; Cox IG; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1793-803. PubMed ID: 11488483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.
    Salmon TO; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the eye's wave aberration.
    Hofer H; Artal P; Singer B; Aragón JL; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Mar; 18(3):497-506. PubMed ID: 11265680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement in retinal image quality with dynamic correction of the eye's aberrations.
    Hofer H; Chen L; Yoon GY; Singer B; Yamauchi Y; Williams DR
    Opt Express; 2001 May; 8(11):631-43. PubMed ID: 19421252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrations and retinal image quality of the normal human eye.
    Liang J; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 1997 Nov; 14(11):2873-83. PubMed ID: 9379245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural compensation for the eye's optical aberrations.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Vis; 2004 Apr; 4(4):281-7. PubMed ID: 15134475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in monochromatic wave aberrations of the human eye.
    McLellan JS; Marcos S; Burns SA
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1390-5. PubMed ID: 11328756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A population study on changes in wave aberrations with accommodation.
    Cheng H; Barnett JK; Vilupuru AS; Marsack JD; Kasthurirangan S; Applegate RA; Roorda A
    J Vis; 2004 Apr; 4(4):272-80. PubMed ID: 15134474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the polarization on ocular wave aberration measurements.
    Prieto PM; Vargas-Martín F; McLellan JS; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):809-14. PubMed ID: 11934175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher order monochromatic aberrations of the human infant eye.
    Wang J; Candy TR
    J Vis; 2005 Jun; 5(6):543-55. PubMed ID: 16097867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monochromatic aberrations and point-spread functions of the human eye across the visual field.
    Navarro R; Moreno E; Dorronsoro C
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2522-9. PubMed ID: 9729864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monochromatic ocular wavefront aberrations in the awake-behaving cat.
    Huxlin KR; Yoon G; Nagy L; Porter J; Williams D
    Vision Res; 2004; 44(18):2159-69. PubMed ID: 15183683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population distribution of wavefront aberrations in the peripheral human eye.
    Lundström L; Gustafsson J; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2192-8. PubMed ID: 19798398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system.
    Hampson KM; Munro I; Paterson C; Dainty C
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1241-50. PubMed ID: 16053145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in representation of monochromatic aberrations of human eyes.
    Atchison DA
    Clin Exp Optom; 2004 May; 87(3):138-48. PubMed ID: 15186204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monochromatic ocular wave aberrations in young monkeys.
    Ramamirtham R; Kee CS; Hung LF; Qiao-Grider Y; Roorda A; Smith EL
    Vision Res; 2006 Oct; 46(21):3616-33. PubMed ID: 16750549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular wave-front aberration statistics in a normal young population.
    Castejón-Mochón JF; López-Gil N; Benito A; Artal P
    Vision Res; 2002 Jun; 42(13):1611-7. PubMed ID: 12079789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.