These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11488508)

  • 1. Comparison of highly efficient absorbing boundary conditions for the beam propagation method.
    Jiménez D; Pérez-Murano F
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):2015-25. PubMed ID: 11488508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.
    Xie Z; Matzen R; Cristini P; Komatitsch D; Martin R
    J Acoust Soc Am; 2016 Jul; 140(1):165. PubMed ID: 27475142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite difference split-step nonparaxial beam propagation method: new method for splitting of operators.
    Bhattacharya D; Sharma A
    Appl Opt; 2009 Apr; 48(10):1878-85. PubMed ID: 19340141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient numerical modelling of time-domain light propagation in curved 3D absorbing and scattering media with finite differences.
    Allali A; Klose AD; Bérubé-Lauzière Y
    Biomed Opt Express; 2021 Mar; 12(3):1422-1436. PubMed ID: 33796363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations.
    Zeng YQ; Liu QH
    J Acoust Soc Am; 2001 Jun; 109(6):2571-80. PubMed ID: 11425097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfectly matched layer absorbing boundary conditions for Euler equations with oblique mean flows modeled with smoothed particle hydrodynamics.
    Yang J; Zhang X; Liu GR; Mao Z; Zhang W
    J Acoust Soc Am; 2020 Feb; 147(2):1311. PubMed ID: 32113260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
    Ma Y; Yu J; Wang Y
    Ultrasonics; 2014 Aug; 54(6):1568-74. PubMed ID: 24794509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical scattering analysis of TE plane waves by a metallic diffraction grating with local defects.
    Sun J; Zheng C
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jan; 26(1):156-62. PubMed ID: 19109612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance-matched absorbers for finite-difference parabolic equation algorithms.
    Yevick D; Thomson DJ
    J Acoust Soc Am; 2000 Mar; 107(3):1226-34. PubMed ID: 10738779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local absorbing boundary conditions for a linearized Korteweg-de Vries equation.
    Zhang W; Li H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053305. PubMed ID: 25353913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory cost of absorbing conditions for the finite-difference time-domain method.
    Chobeau P; Savioja L
    J Acoust Soc Am; 2016 Jul; 140(1):EL119. PubMed ID: 27475200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.
    Yang J; Yu F; Krane M; Zhang LT
    J Fluids Struct; 2018 Jan; 76():135-152. PubMed ID: 29151673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundaryless finite-difference method for three-dimensional beam propagation.
    Guizar-Sicairos M; Gutiérrez-Vega JC
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):866-71. PubMed ID: 16604768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method.
    Yang J; Zhang X; Liu GR; Zhang W
    J Acoust Soc Am; 2019 Jan; 145(1):204. PubMed ID: 30710919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-thin boundary layer for high-accuracy simulations of light propagation.
    Osnabrugge G; Benedictus M; Vellekoop IM
    Opt Express; 2021 Jan; 29(2):1649-1658. PubMed ID: 33726374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026709. PubMed ID: 18850975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.