These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 11488605)

  • 61. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Effect of oxygen and substrates for growth on the superoxide dismutase and catalase activity of microorganisms].
    Kulakova SM; Gogotov IN
    Mikrobiologiia; 1982; 51(1):21-6. PubMed ID: 6803110
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effects of temperature and pH on the kinetics of reactions between catalase and its suicide substrate hydrogen peroxide.
    Ghadermarzi M; Moosavi-Movahedi AA
    Ital J Biochem; 1997 Dec; 46(4):197-205. PubMed ID: 9541866
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Suicide inactivation of peroxidase by H2O2: kinetic equations for peroxidatic oxidation reaction of guaiacol and determination of the kinetic parameters.
    Moosavi Movahedi AA; Nazari K; Ghadermarzi M
    Ital J Biochem; 1999 Mar; 48(1):9-17. PubMed ID: 10354950
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The mechanism of action of lymphokines. VIII. Lymphokine-enhanced spontaneous hydrogen peroxide production by macrophages.
    Freund M; Pick E
    Immunology; 1985 Jan; 54(1):35-45. PubMed ID: 2982731
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.
    Prenosil JE
    Biotechnol Bioeng; 1979 Jan; 21(1):89-109. PubMed ID: 427262
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Asparagine synthetase: an oxidant-sensitive enzyme in Escherichia coli.
    Draczynska-Lusiak B; Brown OR
    Microbios; 1994; 77(312):141-52. PubMed ID: 7909580
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants.
    Sun H; Li G; An T; Zhao H; Wong PK
    Water Res; 2016 Jan; 88():135-143. PubMed ID: 26492340
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery.
    Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S
    Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Determination of catalase activity at physiological hydrogen peroxide concentrations.
    Mueller S; Riedel HD; Stremmel W
    Anal Biochem; 1997 Feb; 245(1):55-60. PubMed ID: 9025968
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The oxidation of indole derivatives catalyzed by horseradish peroxidase is highly chemiluminescent.
    Ximenes VF; Campa A; Catalani LH
    Arch Biochem Biophys; 2001 Mar; 387(2):173-9. PubMed ID: 11370838
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitroxides protect horseradish peroxidase from H
    Samuni A; Maimon E; Goldstein S
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):2060-2069. PubMed ID: 28365302
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of the oligo(ethylene glycol) group on the antioxidant activity of manganese salen complexes.
    Park W; Lim D
    Bioorg Med Chem Lett; 2009 Feb; 19(3):614-7. PubMed ID: 19124240
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide.
    Nakajima R; Yamazaki I
    J Biol Chem; 1987 Feb; 262(6):2576-81. PubMed ID: 3029087
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DNA cleavage by benzidine derivatives in weak acidic conditions.
    Yamashita R; Namihira T; Nakamura Y
    Nucleic Acids Symp Ser; 1993; (29):91-2. PubMed ID: 8247809
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetics of hydrogen peroxide production during in vitro respiratory burst of seabream (Sparus aurata L.) head-kidney leucocytes, as measured by a flow cytometric method.
    Ortuño J; Esteban MA; Meseguer J
    Fish Shellfish Immunol; 2000 Nov; 10(8):725-9. PubMed ID: 11185756
    [No Abstract]   [Full Text] [Related]  

  • 77. A peroxidase-catalyzed sulfoxidation of promethazine.
    Galzigna L; Schiappelli MP; Scarpa M; Rigo A
    Free Radic Res; 1997 Nov; 27(5):501-4. PubMed ID: 9518066
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase.
    Halliwell B
    Biochem J; 1977 Jun; 163(3):441-8. PubMed ID: 195574
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inactivation of creatine kinase during the interaction of indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals.
    Miura T; Muraoka S; Fujimoto Y
    Chem Biol Interact; 2001 Mar; 134(1):13-25. PubMed ID: 11248219
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Operational stability of catalase and its conjugates with aldehyde dextrans and superoxide dismutase].
    Eremin AN; Litvinchuk AV; Metelitsa DI
    Biokhimiia; 1996 Apr; 61(4):664-79. PubMed ID: 8724785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.