These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1148897)

  • 1. Colour television image analysis of carious lesions.
    Rodda JC; Mortimer KV; Williams ED
    Calcif Tissue Res; 1975 Jul; 18(2):149-53. PubMed ID: 1148897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and measurement of approximal radiolucencies by computer-aided image analysis.
    Pitts NB
    Oral Surg Oral Med Oral Pathol; 1984 Sep; 58(3):358-66. PubMed ID: 6592535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning X-ray microradiography of a section of a carious lesion in dental enamel.
    Elliott JC; Dowker SE; Knight RD
    J Microsc; 1981 Jul; 123(Pt 1):89-92. PubMed ID: 7265187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-independent microradiography used for quantification of mineral changes in thin enamel and dentin samples with natural surfaces, pseudo-thick tooth sections, and whole teeth.
    Herkströter FM; Noordmans J; Ten Bosch JJ
    J Dent Res; 1990 Dec; 69(12):1824-7. PubMed ID: 2250087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image analysis of bitewing radiographs: a histologically validated comparison with visual assessments of radiolucency depth in enamel.
    Pitts NB; Renson CE
    Br Dent J; 1986 Mar; 160(6):205-9. PubMed ID: 3456782
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparison of laser fluorescence and longitudinal microradiography for quantitative assessment of in vitro enamel caries.
    Hafström-Björkman U; Sundström F; de Josselin de Jong E; Oliveby A; Angmar-Månsson B
    Caries Res; 1992; 26(4):241-7. PubMed ID: 1423438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal microradiography: a non-destructive automated quantitative method to follow mineral changes in mineralised tissue slices.
    de Josselin de Jong E; van der Linden AH; ten Bosch JJ
    Phys Med Biol; 1987 Oct; 32(10):1209-20. PubMed ID: 3685092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-probe and electron microscope studies of carious dentinal lesions with a remineralized surface layer.
    Takuma S; Ogiwara H; Suzuki H
    Caries Res; 1975; 9(4):278-85. PubMed ID: 1054304
    [No Abstract]   [Full Text] [Related]  

  • 9. Digital enhancement of radiographs for assessment of interproximal dental caries.
    Seneadza V; Koob A; Kaltschmitt J; Staehle HJ; Duwenhoegger J; Eickholz P
    Dentomaxillofac Radiol; 2008 Mar; 37(3):142-8. PubMed ID: 18316505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study investigating the formation of artificial sub-surface enamel caries-like lesions in deciduous and permanent teeth in the presence and absence of fluoride.
    Issa AI; Preston KP; Preston AJ; Toumba KJ; Duggal MS
    Arch Oral Biol; 2003 Aug; 48(8):567-71. PubMed ID: 12828985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel electron-microscopic method for measurement of mineral content in enamel lesions.
    Fowler C; Lynch RJM; Shingler D; Walsh D; Carson C; Neale A; Willson RJ; Brown A
    Arch Oral Biol; 2018 Oct; 94():10-15. PubMed ID: 29929069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrotron x-ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel.
    Dowker SE; Elliott JC; Davis GR; Wilson RM; Cloetens P
    Caries Res; 2004; 38(6):514-22. PubMed ID: 15528905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiographic spatial frequencies essential to the diagnosis of incipient interproximal lesions.
    Webber RL; Koziol PH
    J Dent Res; 1976; 55(5):805-11. PubMed ID: 1067295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of quantitative light-induced fluorescence, digital photography and transverse microradiography for quantification of enamel remineralization.
    Cochrane NJ; Walker GD; Manton DJ; Reynolds EC
    Aust Dent J; 2012 Sep; 57(3):271-6. PubMed ID: 22924348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of new and current methods for dental micro-CT image denoising.
    Shahmoradi M; Lashgari M; Rabbani H; Qin J; Swain M
    Dentomaxillofac Radiol; 2016; 45(3):20150302. PubMed ID: 26764583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of X-ray beam angulation upon the radiographic image of proximal carious lesions.
    Sewerin I
    Community Dent Oral Epidemiol; 1981 Apr; 9(2):74-8. PubMed ID: 6946885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between nanohardness and mineral content of artificial carious enamel lesions.
    Buchalla W; Imfeld T; Attin T; Swain MV; Schmidlin PR
    Caries Res; 2008; 42(3):157-63. PubMed ID: 18446023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries.
    Ricketts DN; Kidd EA; Liepins PJ; Wilson RF
    Caries Res; 1996; 30(2):148-55. PubMed ID: 8833140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enhancement of bite-wing radiographs by digital image processing].
    Klinger HG; Reinhard R; Dünninger P; Wiedemann W
    Z Stomatol; 1989 Mar; 86(1):1-11. PubMed ID: 2638058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.