BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11489180)

  • 1. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress.
    Hong SW; Vierling E
    Plant J; 2001 Jul; 27(1):25-35. PubMed ID: 11489180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101.
    Kim M; Lee U; Small I; des Francs-Small CC; Vierling E
    Plant Cell; 2012 Aug; 24(8):3349-65. PubMed ID: 22942382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress.
    Hong SW; Vierling E
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4392-7. PubMed ID: 10760305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis.
    Wu TY; Juan YT; Hsu YH; Wu SH; Liao HT; Fung RW; Charng YY
    Plant Physiol; 2013 Apr; 161(4):2075-84. PubMed ID: 23439916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of the polyadenylation complex subunit CstF77 reveals that mRNA 3' end formation and HSP101 levels are critical for a robust heat stress response.
    Kim M; Swenson J; McLoughlin F; Vierling E
    Plant Cell; 2023 Feb; 35(2):924-941. PubMed ID: 36472129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis.
    Queitsch C; Hong SW; Vierling E; Lindquist S
    Plant Cell; 2000 Apr; 12(4):479-92. PubMed ID: 10760238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
    Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT
    Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth.
    Nieto-Sotelo J; Martínez LM; Ponce G; Cassab GI; Alagón A; Meeley RB; Ribaut JM; Yang R
    Plant Cell; 2002 Jul; 14(7):1621-33. PubMed ID: 12119379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds.
    Su PH; Li HM
    Plant Physiol; 2008 Mar; 146(3):1231-41. PubMed ID: 18192441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.
    Lin MY; Chai KH; Ko SS; Kuang LY; Lur HS; Charng YY
    Plant Physiol; 2014 Apr; 164(4):2045-53. PubMed ID: 24520156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system.
    Lee U; Wie C; Escobar M; Williams B; Hong SW; Vierling E
    Plant Cell; 2005 Feb; 17(2):559-71. PubMed ID: 15659638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The absence of heat shock protein HSP101 affects the proteome of mature and germinating maize embryos.
    Lázaro-Mixteco PE; Nieto-Sotelo J; Swatek KN; Houston NL; Mendoza-Hernández G; Thelen JJ; Dinkova TD
    J Proteome Res; 2012 Jun; 11(6):3246-58. PubMed ID: 22545728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSP101: a key component for the acquisition of thermotolerance in plants.
    Gurley WB
    Plant Cell; 2000 Apr; 12(4):457-60. PubMed ID: 10760235
    [No Abstract]   [Full Text] [Related]  

  • 14. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing.
    Babbar R; Tiwari LD; Mishra RC; Shimphrui R; Singh AA; Goyal I; Rana S; Kumar R; Sharma V; Tripathi G; Khungar L; Sharma J; Agrawal C; Singh G; Biswas T; Biswal AK; Sahi C; Sarkar NK; Grover A
    Plant Sci; 2023 May; 330():111639. PubMed ID: 36796649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental and thermal regulation of the maize heat shock protein, HSP101.
    Young TE; Ling J; Geisler-Lee CJ; Tanguay RL; Caldwell C; Gallie DR
    Plant Physiol; 2001 Nov; 127(3):777-91. PubMed ID: 11706162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high- and low-temperature inducible Arabidopsis thaliana HSP101 promoter located in a nonautonomous mutator-like element.
    Young LW; Cross RH; Byun-McKay SA; Wilen RW; Bonham-Smith PC
    Genome; 2005 Jun; 48(3):547-55. PubMed ID: 16121251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X; Huang W; Liu J; Yang Z; Huang B
    Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures.
    Hong SW; Lee U; Vierling E
    Plant Physiol; 2003 Jun; 132(2):757-67. PubMed ID: 12805605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress.
    Li S; Fu Q; Huang W; Yu D
    Plant Cell Rep; 2009 Apr; 28(4):683-93. PubMed ID: 19125253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock protein 101 (HSP101) promotes flowering under nonstress conditions.
    Qin F; Yu B; Li W
    Plant Physiol; 2021 May; 186(1):407-419. PubMed ID: 33561259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.