These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11489852)

  • 1. Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway.
    Tsai JW; Alley MR
    J Bacteriol; 2001 Sep; 183(17):5001-7. PubMed ID: 11489852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of a Caulobacter soluble cytoplasmic chemoreceptor is ClpX dependent.
    Potocka I; Thein M; ØSterås M; Jenal U; Alley MR
    J Bacteriol; 2002 Dec; 184(23):6635-41. PubMed ID: 12426352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon.
    Tsai JW; Alley MR
    J Bacteriol; 2000 Jan; 182(2):504-7. PubMed ID: 10629199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis.
    Ryan KR; Judd EM; Shapiro L
    J Mol Biol; 2002 Nov; 324(3):443-55. PubMed ID: 12445780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An essential protease involved in bacterial cell-cycle control.
    Jenal U; Fuchs T
    EMBO J; 1998 Oct; 17(19):5658-69. PubMed ID: 9755166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The highly conserved domain of the Caulobacter McpA chemoreceptor is required for its polar localization.
    Alley MR
    Mol Microbiol; 2001 Jun; 40(6):1335-43. PubMed ID: 11442832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the protease and the turnover signal responsible for cell cycle-dependent degradation of the Caulobacter FliF motor protein.
    Grünenfelder B; Tawfilis S; Gehrig S; ØSterås M; Eglin D; Jenal U
    J Bacteriol; 2004 Aug; 186(15):4960-71. PubMed ID: 15262933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar Localization Hub Protein PopZ Restrains Adaptor-Dependent ClpXP Proteolysis in Caulobacter crescentus.
    Joshi KK; Battle CM; Chien P
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30082457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis.
    Alley MR; Maddock JR; Shapiro L
    Science; 1993 Mar; 259(5102):1754-7. PubMed ID: 8456303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Phosphosignaling Adaptor Primes the AAA+ Protease ClpXP to Drive Cell Cycle-Regulated Proteolysis.
    Lau J; Hernandez-Alicea L; Vass RH; Chien P
    Mol Cell; 2015 Jul; 59(1):104-16. PubMed ID: 26073542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development.
    Bhat NH; Vass RH; Stoddard PR; Shin DK; Chien P
    Mol Microbiol; 2013 Jun; 88(6):1083-92. PubMed ID: 23647068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An essential thioredoxin is involved in the control of the cell cycle in the bacterium
    Goemans CV; Beaufay F; Wahni K; Van Molle I; Messens J; Collet JF
    J Biol Chem; 2018 Mar; 293(10):3839-3848. PubMed ID: 29367337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
    Stephani K; Weichart D; Hengge R
    Mol Microbiol; 2003 Sep; 49(6):1605-14. PubMed ID: 12950924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus.
    Schelin J; Lindmark F; Clarke AK
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay of ClpXP with the cell division machinery in Escherichia coli.
    Camberg JL; Hoskins JR; Wickner S
    J Bacteriol; 2011 Apr; 193(8):1911-8. PubMed ID: 21317324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.