BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11489875)

  • 1. Methanococcus jannaschii generates L-proline by cyclization of L-ornithine.
    Graupner M; White RH
    J Bacteriol; 2001 Sep; 183(17):5203-5. PubMed ID: 11489875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
    Jensen JV; Wendisch VF
    Microb Cell Fact; 2013 Jun; 12():63. PubMed ID: 23806148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Ornithine Cyclodeaminase Using an EvolvR-Based Growth-Coupling Strategy for Efficient Biosynthesis of l-Proline.
    Long M; Xu M; Qiao Z; Ma Z; Osire T; Yang T; Zhang X; Shao M; Rao Z
    ACS Synth Biol; 2020 Jul; 9(7):1855-1863. PubMed ID: 32551572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase.
    Lee SY; Cho JY; Lee HJ; Kim YH; Min J
    J Microbiol Biotechnol; 2010 Jan; 20(1):127-31. PubMed ID: 20134243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a multi-enzymatic cascade reaction for the synthesis of trans-3-hydroxy-L-proline from L-arginine.
    Hara R; Kitatsuji S; Yamagata K; Kino K
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):243-53. PubMed ID: 26411456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.
    Min K; Yoon HJ; Matsuura A; Kim YH; Lee HH
    Mol Cells; 2018 Apr; 41(4):331-341. PubMed ID: 29629557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways.
    Tricot C; Stalon V; Legrain C
    J Gen Microbiol; 1991 Dec; 137(12):2911-8. PubMed ID: 1791443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium
    Lee H; Rhee S
    J Biol Chem; 2020 Apr; 295(17):5751-5760. PubMed ID: 32198136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) study on Ornithine Cyclodeaminase (OCD): a tale of two iminiums.
    Ion BF; Bushnell EA; Luna PD; Gauld JW
    Int J Mol Sci; 2012 Oct; 13(10):12994-3011. PubMed ID: 23202934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolic pathway of arginine in Anabaena involves a novel bifunctional enzyme that produces proline from arginine.
    Burnat M; Picossi S; Valladares A; Herrero A; Flores E
    Mol Microbiol; 2019 Apr; 111(4):883-897. PubMed ID: 30636068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ornithine cyclodeaminase: structure, mechanism of action, and implications for the mu-crystallin family.
    Goodman JL; Wang S; Alam S; Ruzicka FJ; Frey PA; Wedekind JE
    Biochemistry; 2004 Nov; 43(44):13883-91. PubMed ID: 15518536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plant oncogene rolD encodes a functional ornithine cyclodeaminase.
    Trovato M; Maras B; Linhares F; Costantino P
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):13449-53. PubMed ID: 11687622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase.
    Sans N; Schröder G; Schröder J
    Eur J Biochem; 1987 Aug; 167(1):81-7. PubMed ID: 3040404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis.
    Graham DE; Xu H; White RH
    J Biol Chem; 2002 Jun; 277(26):23500-7. PubMed ID: 11980912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine.
    Sans N; Schindler U; Schröder J
    Eur J Biochem; 1988 Apr; 173(1):123-30. PubMed ID: 3281832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid.
    Dessaux Y; Petit A; Tempé J; Demarez M; Legrain C; Wiame JM
    J Bacteriol; 1986 Apr; 166(1):44-50. PubMed ID: 3957872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ornithine cyclodeaminase/μ-crystallin homolog from the hyperthermophilic archaeon Thermococcus litoralis functions as a novel Δ(1)-pyrroline-2-carboxylate reductase involved in putative trans-3-hydroxy-l-proline metabolism.
    Watanabe S; Tozawa Y; Watanabe Y
    FEBS Open Bio; 2014; 4():617-26. PubMed ID: 25161870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of ornithine as a precursor for proline in mammalian cells.
    Smith RJ; Phang JM
    J Cell Physiol; 1979 Mar; 98(3):475-81. PubMed ID: 438294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions involved in the conversion of ornithine to proline in Clostridia.
    Costilow RN; Laycock L
    J Bacteriol; 1969 Nov; 100(2):662-7. PubMed ID: 4311194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC.
    Kenklies J; Ziehn R; Fritsche K; Pich A; Andreesen JR
    Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():819-826. PubMed ID: 10220161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.