These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1149080)

  • 21. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms.
    McNiven MA; Wang M; Porter KR
    Cell; 1984 Jul; 37(3):753-65. PubMed ID: 6744413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cytoskeleton in fish melanophore melanosome positioning.
    Sköld HN; Aspengren S; Wallin M
    Microsc Res Tech; 2002 Sep; 58(6):464-9. PubMed ID: 12242703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local light stimulation of melanophores of a teleost, Zacco temmincki.
    Iga T; Takabatake I
    J Exp Zool; 1986 Jun; 238(3):385-91. PubMed ID: 3723090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii.
    Obika M; Meyer-Rochow VB
    Pigment Cell Res; 1990; 3(1):33-7. PubMed ID: 2377579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro.
    Rogers SL; Tint IS; Fanapour PC; Gelfand VI
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3720-5. PubMed ID: 9108044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-centring activity of cytoplasm.
    Rodionov VI; Borisy GG
    Nature; 1997 Mar; 386(6621):170-3. PubMed ID: 9062188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adrenergic nerves and the alpha 2-adrenoceptor system regulating melanosome aggregation within fish melanophores.
    Andersson RG; Karlsson JO; Grundström N
    Acta Physiol Scand; 1984 Jun; 121(2):173-9. PubMed ID: 6147954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.
    Kasukawa H; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 80(2):211-5. PubMed ID: 2860997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptor mechanisms in fish chromatophores--VI. Adenosine receptors mediate pigment dispersion in guppy and catfish melanophores.
    Miyashita Y; Kumazawa T; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):205-10. PubMed ID: 6144418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional coordination of microtubule-based and actin-based motility in melanophores.
    Rodionov VI; Hope AJ; Svitkina TM; Borisy GG
    Curr Biol; 1998 Jan; 8(3):165-8. PubMed ID: 9443917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of chromatophore movements in dermal chromatic units of blue damselfish--I. The melanophore.
    Kasukawa H; Sugimoto M; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):253-7. PubMed ID: 2861944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological studies on microfilaments and their organizing center in killifish (Fundulus heteroclitus L.) melanophores.
    Kimler VA; Palazzolo KL; Anne P; Haddad MM; Lee JB; Harkins C; Vallarapu B; Taylor JD
    Pigment Cell Res; 2002 Aug; 15(4):298-304. PubMed ID: 12100496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the effects of illumination on the melanophores of intact and eyestalkless fiddler crabs, Uca pugilator, and inhibition of the primary response by cytochalasin B.
    Coohill TP; Fingerman M
    Experientia; 1976 May; 32(5):569-70. PubMed ID: 1278294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An increase in extracellular Ca(2+) concentration induces pigment aggregation in teleostean melanophores.
    Yamada T; Fujii R
    Zoolog Sci; 2002 Aug; 19(8):829-39. PubMed ID: 12193799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium.
    Luby-Phelps K; Porter KR
    Cell; 1982 Jun; 29(2):441-50. PubMed ID: 6811138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microtubule polarity confers direction to pigment transport in chromatophores.
    McNiven MA; Porter KR
    J Cell Biol; 1986 Oct; 103(4):1547-55. PubMed ID: 2877000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.