BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11491088)

  • 1. Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate.
    Madigan MT; Jung DO; Resnick SM
    Arch Microbiol; 2001 Jun; 175(6):462-5. PubMed ID: 11491088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides.
    Paoli GC; Tabita FR
    Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary alcohols and di-alcohols as growth substrates for the purple nonsulfur bacterium Rhodobacter capsulatus.
    Pantazopoulous PE; Madigan MT
    Can J Microbiol; 2000 Dec; 46(12):1166-70. PubMed ID: 11142409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Synthesis of bacteriochlorophyll a by the purple nonsulfur bacterium Rhodobacter capsulatus].
    Patrusheva EV; Fedorov AS; Belera VV; Minkevich IG; Tsygankov AA
    Prikl Biokhim Mikrobiol; 2007; 43(2):208-14. PubMed ID: 17476808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus.
    Witte CP; Blasco R; Castillo F
    Appl Biochem Biotechnol; 1998 Mar; 69(3):191-200. PubMed ID: 9584054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides.
    Baciou L; Bylina EJ; Sebban P
    Biophys J; 1993 Aug; 65(2):652-60. PubMed ID: 8218894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1992 Feb; 58(2):690-5. PubMed ID: 1610190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.
    Magnin JP; Gondrexon N; Willison JC
    Can J Microbiol; 2014 Dec; 60(12):829-37. PubMed ID: 25403904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of L-phenylalanine and L-tyrosine by the phototrophic bacterium Rhodobacter capsulatus.
    Sáez LP; Castillo F; Caballero FJ
    Curr Microbiol; 1999 Jan; 38(1):51-6. PubMed ID: 9841783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relations between the chemotype and the cell electrophoretic properties in Rhodobacter capsulatus strains].
    Zubova SV; Ivanov AIu; Prokhorenko IR
    Mikrobiologiia; 2007; 76(2):206-11. PubMed ID: 17583217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of hippurate from benzoate and glycine by rat liver mitochondria. Submitochondrial localization and kinetics.
    Gatley SJ; Sherratt HS
    Biochem J; 1977 Jul; 166(1):39-47. PubMed ID: 901416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase.
    Moreno-Vivián C; Soler G; Castillo F
    Eur J Biochem; 1992 Mar; 204(2):531-7. PubMed ID: 1541268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
    Kopf SH; Newman DK
    Geobiology; 2012 May; 10(3):216-22. PubMed ID: 22212713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression.
    Drepper T; Raabe K; Giaourakis D; Gendrullis M; Masepohl B; Klipp W
    FEMS Microbiol Lett; 2002 Oct; 215(2):221-7. PubMed ID: 12399038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.
    Novak RT; Gritzer RF; Leadbetter ER; Godchaux W
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1881-1891. PubMed ID: 15184574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzoate-induced changes in glycine and urea metabolism in patients with chronic renal failure.
    Mitch WE; Brusilow S
    J Pharmacol Exp Ther; 1982 Sep; 222(3):572-5. PubMed ID: 7108765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.
    Utschig LM; Poluektov O; Schlesselman SL; Thurnauer MC; Tiede DM
    Biochemistry; 2001 May; 40(20):6132-41. PubMed ID: 11352751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex.
    Crouch LI; Jones MR
    Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes.
    Milford AD; Achenbach LA; Jung DO; Madigan MT
    Arch Microbiol; 2000; 174(1-2):18-27. PubMed ID: 10985738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.