BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11491293)

  • 1. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures.
    Knöfel T; Sträter N
    J Mol Biol; 2001 May; 309(1):239-54. PubMed ID: 11491293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E. coli 5'-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion.
    Knöfel T; Sträter N
    J Mol Biol; 2001 May; 309(1):255-66. PubMed ID: 11491294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the two domains of E. coli 5'-nucleotidase to substrate specificity and catalysis.
    Krug U; Patzschke R; Zebisch M; Balbach J; Sträter N
    FEBS Lett; 2013 Mar; 587(5):460-6. PubMed ID: 23333297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site.
    Knöfel T; Sträter N
    Nat Struct Biol; 1999 May; 6(5):448-53. PubMed ID: 10331872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large hinge bending domain rotation is necessary for the catalytic function of Escherichia coli 5'-nucleotidase.
    Schultz-Heienbrok R; Maier T; Sträter N
    Biochemistry; 2005 Feb; 44(7):2244-52. PubMed ID: 15709736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate.
    Huang W; Jia J; Gibson KJ; Taylor WS; Rendina AR; Schneider G; Lindqvist Y
    Biochemistry; 1995 Sep; 34(35):10985-95. PubMed ID: 7669756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.
    Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B
    J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling.
    Knapp K; Zebisch M; Pippel J; El-Tayeb A; Müller CE; Sträter N
    Structure; 2012 Dec; 20(12):2161-73. PubMed ID: 23142347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phosphoryl-transfer mechanism of Escherichia coli phosphoenolpyruvate carboxykinase from the use of AlF(3).
    Sudom AM; Prasad L; Goldie H; Delbaere LT
    J Mol Biol; 2001 Nov; 314(1):83-92. PubMed ID: 11724534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate.
    Duff AP; Andrews TJ; Curmi PM
    J Mol Biol; 2000 May; 298(5):903-16. PubMed ID: 10801357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism.
    Bernstein BE; Hol WG
    Biochemistry; 1998 Mar; 37(13):4429-36. PubMed ID: 9521762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.
    Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N
    Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5'-nucleotidase (CD73) Inhibitors with Variable Binding Modes.
    Bhattarai S; Pippel J; Scaletti E; Idris R; Freundlieb M; Rolshoven G; Renn C; Lee SY; Abdelrahman A; Zimmermann H; El-Tayeb A; Müller CE; Sträter N
    J Med Chem; 2020 Mar; 63(6):2941-2957. PubMed ID: 32045236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a soluble form of human CD73 with ecto-5'-nucleotidase activity.
    Heuts DP; Weissenborn MJ; Olkhov RV; Shaw AM; Gummadova J; Levy C; Scrutton NS
    Chembiochem; 2012 Nov; 13(16):2384-91. PubMed ID: 22997138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of substrate specificity and selectivity of murine cytosolic 5'-nucleotidase III.
    Grobosky CL; Lopez JB; Rennie S; Skopelitis DJ; Wiest AT; Bingman CA; Bitto E
    J Mol Biol; 2012 Nov; 423(4):540-54. PubMed ID: 22925580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site.
    Sträter N; Klabunde T; Tucker P; Witzel H; Krebs B
    Science; 1995 Jun; 268(5216):1489-92. PubMed ID: 7770774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.