These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1149140)

  • 1. The fine structure of the centrohelidian heliozoan Heterophrys marina.
    Bardele CF
    Cell Tissue Res; 1975 Aug; 161(1):85-102. PubMed ID: 1149140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of axopodial microtubule patterns and possible mechanisms of pattern control in the centrohelidian heliozoa Acanthocystis, Raphidiophrys and Heterophrys.
    Bardele CF
    J Cell Sci; 1977 Jun; 25():205-32. PubMed ID: 893559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-voltage electron microscopy reveals new components in the axonemes and centroplast of the centrohelidian Raphidiophrys amibigua.
    Rieder CL
    J Cell Sci; 1979 Dec; 40():215-34. PubMed ID: 536388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization and control of microtubule pattern in centrohelidan heliozoa.
    Bardele CF
    J Protozool; 1977 Feb; 24(1):9-14. PubMed ID: 864625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taxol affects both the microtubular arrays of heliozoan axonemes and their microtubule-organizing center.
    Hauser M
    Eur J Cell Biol; 1986 Dec; 42(2):295-304. PubMed ID: 2880715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle movement in heliozoan axopods associated with lateral displacement of highly ordered membrane domains.
    Bardele CF
    Z Naturforsch C Biosci; 1976; 31(3-4):190-4. PubMed ID: 134561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food capture and ingestion in the large heliozoan, Echinosphaerium nucleofilum.
    Suzaki T; Shigenaka Y; Watanabe S; Toyohara A
    J Cell Sci; 1980 Apr; 42():61-79. PubMed ID: 7400244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule-organizing centres and assembly of the double-spiral microtubule pattern in certain heliozoan axonemes.
    Jones JC; Tucker JB
    J Cell Sci; 1981 Aug; 50():259-80. PubMed ID: 7320069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ultrastructure of contractile tubules in the heliozoon Actinophrys sol and their possible involvement in rapid axopodial contraction.
    Kinoshita E; Shigenaka Y; Suzaki T
    J Eukaryot Microbiol; 2001; 48(5):519-26. PubMed ID: 11596916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme.
    Edds KT
    J Cell Biol; 1975 Jul; 66(1):145-55. PubMed ID: 1141372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia.
    Tilney LG; Porter KR
    J Cell Biol; 1967 Jul; 34(1):327-43. PubMed ID: 6033539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys.
    Tilney LG
    J Cell Biol; 1971 Dec; 51(3):837-54. PubMed ID: 5128354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187.
    Schliwa M
    J Cell Biol; 1976 Sep; 70(3):527-40. PubMed ID: 821953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule dissassembly in vivo: intercalary destabilization and breakdown of microtubules in the heliozoan Actinocoryne contractilis.
    Febvre-Chevalier C; Febvre J
    J Cell Biol; 1992 Aug; 118(3):585-94. PubMed ID: 1639845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the motility of the foraminifera. I. Ultrastructure of the reticulopodial network of Allogromia laticollaris (Arnold).
    Travis JL; Allen RD
    J Cell Biol; 1981 Jul; 90(1):211-21. PubMed ID: 6894760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axopodial contraction in the heliozoon Raphidiophrys contractilis requires extracellular Ca2+.
    Khan SM; Arikawa M; Omura G; Suetomo Y; Kakuta S; Suzaki T
    Zoolog Sci; 2003 Nov; 20(11):1367-72. PubMed ID: 14624035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet light microbeam irradiation of the microtubules in single heliozoan axopodia.
    Ockleford CD
    Exp Cell Res; 1975 Jun; 93(1):127-35. PubMed ID: 1140215
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett).
    Tilney LG; Hiramoto Y; Marsland D
    J Cell Biol; 1966 Apr; 29(1):77-95. PubMed ID: 5920198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivation of Ca2+-dependent cytoplasmic contraction in permeabilized cell models of the heliozoon Echinosphaerium akamae.
    Arikawa M; Suzaki T
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):267-72. PubMed ID: 12378536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic streaming in a heliozoan.
    Edds KT
    Biosystems; 1981; 14(3-4):371-6. PubMed ID: 7199950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.