These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11491557)

  • 1. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.
    Hand LH; Kuet SF; Lane MC; Maund SJ; Warinton JS; Hill IR
    Environ Toxicol Chem; 2001 Aug; 20(8):1740-5. PubMed ID: 11491557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density.
    Leistra M; Zweers AJ; Warinton JS; Crum SJ; Hand LH; Beltman WH; Maund SJ
    Pest Manag Sci; 2004 Jan; 60(1):75-84. PubMed ID: 14727744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin.
    He LM; Troiano J; Wang A; Goh K
    Rev Environ Contam Toxicol; 2008; 195():71-91. PubMed ID: 18418954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants.
    Bennett ER; Moore MT; Cooper CM; Smith S
    Bull Environ Contam Toxicol; 2000 Jun; 64(6):825-33. PubMed ID: 10856339
    [No Abstract]   [Full Text] [Related]  

  • 5. Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments.
    Maund SJ; Hamer MJ; Lane MC; Farrelly E; Rapley JH; Goggin UM; Gentle WE
    Environ Toxicol Chem; 2002 Jan; 21(1):9-15. PubMed ID: 11808535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects.
    Lawler SP; Dritz DA; Christiansen JA; Cornel AJ
    Pest Manag Sci; 2007 Mar; 63(3):234-40. PubMed ID: 16900577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff.
    Bennett ER; Moore MT; Cooper CM; Smith S; Shields FD; Drouillard KG; Schulz R
    Environ Toxicol Chem; 2005 Sep; 24(9):2121-7. PubMed ID: 16193737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms.
    Bouldin JL; Farris JL; Moore MT; Smith S; Stephens WW; Cooper CM
    Environ Toxicol; 2005 Oct; 20(5):487-98. PubMed ID: 16161102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate and effects of the insecticide-miticide chlorfenapyr in outdoor aquatic microcosms.
    Rand GM
    Ecotoxicol Environ Saf; 2004 May; 58(1):50-60. PubMed ID: 15087163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.
    Wang JZ; Bai YS; Wu Y; Zhang S; Chen TH; Peng SC; Xie YW; Zhang XW
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10406-10414. PubMed ID: 26606936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.
    Gu BG; Wang HM; Chen WL; Cai DJ; Shan ZJ
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):69-74. PubMed ID: 17379369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.
    Son J; Hooven LA; Harper B; Harper SL
    Sci Total Environ; 2015 Dec; 538():683-91. PubMed ID: 26327636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative toxicities of organophosphate and pyrethroid insecticides to aquatic macroarthropods.
    Halstead NT; Civitello DJ; Rohr JR
    Chemosphere; 2015 Sep; 135():265-71. PubMed ID: 25966044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic time courses of lambda-cyhalothrin metabolites after dermal application of Matador EC 120 in volunteers.
    Khemiri R; Côté J; Fetoui H; Bouchard M
    Toxicol Lett; 2018 Oct; 296():132-138. PubMed ID: 30120931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic fate of a double-stranded RNA in a sediment---water system following an over-water application.
    Fischer JR; Zapata F; Dubelman S; Mueller GM; Uffman JP; Jiang C; Jensen PD; Levine SL
    Environ Toxicol Chem; 2017 Mar; 36(3):727-734. PubMed ID: 27530554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms.
    Farmer D; Hill IR; Maund SJ
    Ecotoxicology; 1995 Aug; 4(4):219-44. PubMed ID: 24197745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction.
    Colombo R; Ferreira TC; Alves SA; Carneiro RL; Lanza MR
    J Environ Manage; 2013 Mar; 118():32-9. PubMed ID: 23380363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.
    Li H; Wei Y; Lydy MJ; You J
    Environ Pollut; 2014 Jul; 190():19-26. PubMed ID: 24704807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.