BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11491661)

  • 1. Nitric oxide and superoxide radical production by human mononuclear leukocytes.
    Valdez LB; Boveris A
    Antioxid Redox Signal; 2001 Jun; 3(3):505-13. PubMed ID: 11491661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils.
    Carreras MC; Pargament GA; Catz SD; Poderoso JJ; Boveris A
    FEBS Lett; 1994 Mar; 341(1):65-8. PubMed ID: 8137924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of neuronal and inducible nitric oxide synthases: generation of nitric oxide, superoxide, and hydrogen peroxide.
    Weaver J; Porasuphatana S; Tsai P; Pou S; Roman LJ; Rosen GM
    Biochim Biophys Acta; 2005 Nov; 1726(3):302-8. PubMed ID: 16216417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditions to study nitric oxide generation by polymorphonuclear cells from an inflammatory exudate in rats.
    RĂ³denas J; Carbonell T; Mitjavila MT
    Arch Biochem Biophys; 1996 Mar; 327(2):292-4. PubMed ID: 8619617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulatory role of nitric oxide on superoxide-dependent luminol chemiluminescence.
    Castro L; Alvarez MN; Radi R
    Arch Biochem Biophys; 1996 Sep; 333(1):179-88. PubMed ID: 8806769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of catalase on the proliferation of human lymphocytes to phorbol myristate acetate.
    Sagone AL; Husney R; Guter H; Clark L
    J Immunol; 1984 Sep; 133(3):1488-94. PubMed ID: 6747295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiluminescence and superoxide anion production by leukocytes from diabetic patients.
    Shah SV; Wallin JD; Eilen SD
    J Clin Endocrinol Metab; 1983 Aug; 57(2):402-9. PubMed ID: 6306042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production.
    Bal-Price A; Matthias A; Brown GC
    J Neurochem; 2002 Jan; 80(1):73-80. PubMed ID: 11796745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide anion generation by human peripheral blood mononuclear cells in response to prothymosin alpha.
    Aliverti A; Galaris D; Tsolas O
    Arch Biochem Biophys; 1995 Aug; 321(1):108-14. PubMed ID: 7639508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cGMP modulator, LY83583 alters oxygen metabolites differently in cultured endothelial cells and isolated neutrophilic granulocytes.
    Sundqvist T; Axelsson KL
    Pharmacol Toxicol; 1993 Mar; 72(3):169-74. PubMed ID: 8390653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cocaine-mediated suppression of superoxide production by human peripheral blood mononuclear cells.
    Chao CC; Molitor TW; Gekker G; Murtaugh MP; Peterson PK
    J Pharmacol Exp Ther; 1991 Jan; 256(1):255-8. PubMed ID: 1846416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen metabolism of human colostral macrophages: comparison with monocytes and polymorphonuclear leukocytes.
    Tsuda H; Takeshige K; Shibata Y; Minakami S
    J Biochem; 1984 May; 95(5):1237-45. PubMed ID: 6086600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide production in the vasculature of lipopolysaccharide-treated rats and pigs.
    Javeshghani D; Hussain SN; Scheidel J; Quinn MT; Magder SA
    Shock; 2003 May; 19(5):486-93. PubMed ID: 12744495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide, superoxide, and hydrogen peroxide production in brain mitochondria after haloperidol treatment.
    Arnaiz SL; Coronel MF; Boveris A
    Nitric Oxide; 1999 Jun; 3(3):235-43. PubMed ID: 10442855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen metabolism in cloned macrophage cell lines: glucose dependence of superoxide production, metabolic and spectral analysis.
    Kiyotaki C; Peisach J; Bloom BR
    J Immunol; 1984 Feb; 132(2):857-66. PubMed ID: 6317750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli lipopolysaccharide potentiation and inhibition of rat neonatal microglia superoxide anion generation: correlation with prior lactic dehydrogenase, nitric oxide, tumor necrosis factor-alpha, thromboxane B2, and metalloprotease release.
    Mayer AM; Oh S; Ramsey KH; Jacobson PB; Glaser KB; Romanic AM
    Shock; 1999 Mar; 11(3):180-6. PubMed ID: 10188770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysis of tumor cells by human blood monocytes by a mechanism independent of activation of the oxidative burst.
    Kleinerman ES; Ceccorulli LM; Bonvini E; Zicht R; Gallin JI
    Cancer Res; 1985 May; 45(5):2058-64. PubMed ID: 2985242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes.
    McNally JA; Bell AL
    J Biolumin Chemilumin; 1996; 11(2):99-106. PubMed ID: 8726584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of monocytes by interferon-gamma has no effect on the level or affinity of the nicotinamide adenine dinucleotide-phosphate oxidase and on agonist-dependent superoxide formation.
    Thelen M; Wolf M; Baggiolini M
    J Clin Invest; 1988 Jun; 81(6):1889-95. PubMed ID: 2838524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of lidocaine on oxygen free radical production by polymorphonuclear neutrophils.
    Siminiak T; Wysocki H
    Agents Actions; 1992; Spec No():C104-5. PubMed ID: 1332451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.