These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11492954)

  • 1. Lactate release, concentration in blood, and apparent distribution volume after intense bicycling.
    Medbø JI; Toska K
    Jpn J Physiol; 2001 Jun; 51(3):303-12. PubMed ID: 11492954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterio-venous differences of blood acid-base status and plasma sodium caused by intense bicycling.
    Medbø JI; Hanem S; Noddeland H; Jebens E
    Acta Physiol Scand; 2000 Feb; 168(2):311-26. PubMed ID: 10712569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate elimination and glycogen resynthesis after intense bicycling.
    Medbø JI; Jebens E; Noddeland H; Hanem S; Toska K
    Scand J Clin Lab Invest; 2006; 66(3):211-26. PubMed ID: 16714250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.
    Medbø JI; Tabata I
    J Appl Physiol (1985); 1993 Oct; 75(4):1654-60. PubMed ID: 8282617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.
    Bangsbo J; Madsen K; Kiens B; Richter EA
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):587-96. PubMed ID: 8887768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers.
    Gojda J; Waldauf P; Hrušková N; Blahutová B; Krajčová A; Urban T; Tůma P; Řasová K; Duška F
    PLoS One; 2019; 14(3):e0200228. PubMed ID: 30822305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic demands of intense aerobic interval training in competitive cyclists.
    Stepto NK; Martin DT; Fallon KE; Hawley JA
    Med Sci Sports Exerc; 2001 Feb; 33(2):303-10. PubMed ID: 11224822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
    Bangsbo J; Graham TE; Kiens B; Saltin B
    J Physiol; 1992; 451():205-27. PubMed ID: 1403811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
    Bangsbo J; Gollnick PD; Graham TE; Juel C; Kiens B; Mizuno M; Saltin B
    J Physiol; 1990 Mar; 422():539-59. PubMed ID: 2352192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate and H+ uptake in inactive muscles during intense exercise in man.
    Bangsbo J; Aagaard T; Olsen M; Kiens B; Turcotte LP; Richter EA
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):219-29. PubMed ID: 8568658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leg and arm lactate and substrate kinetics during exercise.
    Van Hall G; Jensen-Urstad M; Rosdahl H; Holmberg HC; Saltin B; Calbet JA
    Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eccentric exercise-induced muscle damage dissociates the lactate and gas exchange thresholds.
    Davies RC; Rowlands AV; Poole DC; Jones AM; Eston RG
    J Sports Sci; 2011 Jan; 29(2):181-9. PubMed ID: 21170804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different muscle shortening velocities during prolonged incremental cycling exercise on the plasma growth hormone, insulin, glucose, glucagon, cortisol, leptin and lactate concentrations.
    Zoladz JA; Duda K; Konturek SJ; Sliwowski Z; Pawlik T; Majerczak J
    J Physiol Pharmacol; 2002 Sep; 53(3):409-22. PubMed ID: 12369738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inspired O2 concentration on leg lactate release during incremental exercise.
    Knight DR; Poole DC; Hogan MC; Bebout DE; Wagner PD
    J Appl Physiol (1985); 1996 Jul; 81(1):246-51. PubMed ID: 8828671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg gas exchange, release of glycerol, and uptake of fats after two minutes bicycling to exhaustion.
    Medbø JI; Jebens E
    Scand J Clin Lab Invest; 2002; 62(3):211-21. PubMed ID: 12088340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of deception for intensity on surface electromyogram (SEMG) activity and blood lactate concentration during intermittent cycling followed by exhaustive cycling.
    Matsuura R; Arimitsu T; Yunoki T; Kimura T; Yamanaka R; Yano T
    Acta Physiol Hung; 2013 Mar; 100(1):54-63. PubMed ID: 23471041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.