BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11493542)

  • 1. LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo.
    Sherwood DR; McClay DR
    Development; 2001 Jun; 128(12):2221-32. PubMed ID: 11493542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
    Sherwood DR; McClay DR
    Development; 1997 Sep; 124(17):3363-74. PubMed ID: 9310331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
    Sherwood DR; McClay DR
    Development; 1999 Apr; 126(8):1703-13. PubMed ID: 10079232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.
    Angerer LM; Angerer RC
    Dev Biol; 2000 Feb; 218(1):1-12. PubMed ID: 10644406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
    Angerer LM; Oleksyn DW; Levine AM; Li X; Klein WH; Angerer RC
    Development; 2001 Nov; 128(22):4393-404. PubMed ID: 11714666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling.
    Li X; Wikramanayake AH; Klein WH
    Dev Biol; 1999 Aug; 212(2):425-39. PubMed ID: 10433832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.
    Huang L; Li X; El-Hodiri HM; Dayal S; Wikramanayake AH; Klein WH
    Dev Genes Evol; 2000 Feb; 210(2):73-81. PubMed ID: 10664150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos.
    Howard EW; Newman LA; Oleksyn DW; Angerer RC; Angerer LM
    Development; 2001 Feb; 128(3):365-75. PubMed ID: 11152635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
    Weitzel HE; Illies MR; Byrum CA; Xu R; Wikramanayake AH; Ettensohn CA
    Development; 2004 Jun; 131(12):2947-56. PubMed ID: 15151983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.