These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11493542)

  • 21. Specification of endoderm and mesoderm in the sea urchin.
    McClay DR
    Zygote; 2000; 8 Suppl 1():S41. PubMed ID: 11191303
    [No Abstract]   [Full Text] [Related]  

  • 22. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo.
    Fuchikami T; Mitsunaga-Nakatsubo K; Amemiya S; Hosomi T; Watanabe T; Kurokawa D; Kataoka M; Harada Y; Satoh N; Kusunoki S; Takata K; Shimotori T; Yamamoto T; Sakamoto N; Shimada H; Akasaka K
    Development; 2002 Nov; 129(22):5205-16. PubMed ID: 12399312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo.
    Logan CY; McClay DR
    Development; 1997 Jun; 124(11):2213-23. PubMed ID: 9187147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.
    Katz Imberman S; Kolpakova A; Keren A; Bengal E
    FEBS J; 2015 Aug; 282(15):2930-47. PubMed ID: 26038288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos.
    Yazaki I
    J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
    Angerer LM; Angerer RC
    Curr Top Dev Biol; 2003; 53():159-98. PubMed ID: 12509127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms.
    Davidson EH; Cameron RA; Ransick A
    Development; 1998 Sep; 125(17):3269-90. PubMed ID: 9693132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway.
    Marikawa Y; Li Y; Elinson RP
    Dev Biol; 1997 Nov; 191(1):69-79. PubMed ID: 9356172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.