These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11493545)

  • 1. Hoxd10 induction and regionalization in the developing lumbosacral spinal cord.
    Lance-Jones C; Omelchenko N; Bailis A; Lynch S; Sharma K
    Development; 2001 Jun; 128(12):2255-68. PubMed ID: 11493545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming neural Hoxd10: in vivo evidence that early node-associated signals predominate over paraxial mesoderm signals at posterior spinal levels.
    Omelchenko N; Lance-Jones C
    Dev Biol; 2003 Sep; 261(1):99-115. PubMed ID: 12941623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted patterns of Hoxd10 and Hoxd11 set segmental differences in motoneuron subtype complement in the lumbosacral spinal cord.
    Misra M; Shah V; Carpenter E; McCaffery P; Lance-Jones C
    Dev Biol; 2009 Jun; 330(1):54-72. PubMed ID: 19306865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic expression of Hoxd10 in thoracic spinal segments induces motoneurons with a lumbosacral molecular profile and axon projections to the limb.
    Shah V; Drill E; Lance-Jones C
    Dev Dyn; 2004 Sep; 231(1):43-56. PubMed ID: 15305286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical period for the specification of motor pools in the chick lumbosacral spinal cord.
    Matise MP; Lance-Jones C
    Development; 1996 Feb; 122(2):659-69. PubMed ID: 8625817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm.
    Ensini M; Tsuchida TN; Belting HG; Jessell TM
    Development; 1998 Mar; 125(6):969-82. PubMed ID: 9463344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning.
    Lin AW; Carpenter EM
    J Neurobiol; 2003 Sep; 56(4):328-37. PubMed ID: 12918017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression patterns of Hox10 paralogous genes during lumbar spinal cord development.
    Choe A; Phun HQ; Tieu DD; Hu YH; Carpenter EM
    Gene Expr Patterns; 2006 Oct; 6(7):730-7. PubMed ID: 16495162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hox transcription factors influence motoneuron identity through the integrated actions of both homeodomain and non-homeodomain regions.
    Misra M; Sours E; Lance-Jones C
    Dev Dyn; 2012 Apr; 241(4):718-31. PubMed ID: 22411553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dorsal-ventral patterning during neural induction in Xenopus: assessment of spinal cord regionalization with xHB9, a marker for the motor neuron region.
    Saha MS; Miles RR; Grainger RM
    Dev Biol; 1997 Jul; 187(2):209-23. PubMed ID: 9242418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm.
    Bang AG; Papalopulu N; Goulding MD; Kintner C
    Dev Biol; 1999 Aug; 212(2):366-80. PubMed ID: 10433827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Hoxd10-regulated transcriptional network and combinatorial interactions with Hoxa10 during spinal cord development.
    Hedlund E; Karsten SL; Kudo L; Geschwind DH; Carpenter EM
    J Neurosci Res; 2004 Feb; 75(3):307-19. PubMed ID: 14743444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm.
    Mauch TJ; Yang G; Wright M; Smith D; Schoenwolf GC
    Dev Biol; 2000 Apr; 220(1):62-75. PubMed ID: 10720431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo.
    Erter CE; Wilm TP; Basler N; Wright CV; Solnica-Krezel L
    Development; 2001 Sep; 128(18):3571-83. PubMed ID: 11566861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of neural crest-derived Schwann cells from subsets of brachial spinal segments into the peripheral nerves innervating the chick forelimb.
    Carpenter EM; Hollyday M
    Dev Biol; 1992 Mar; 150(1):160-70. PubMed ID: 1537431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning signals acting in the spinal cord override the organizing activity of the isthmus.
    Grapin-Botton A; Cambronero F; Weiner HL; Bonnin MA; Puelles L; Le Douarin NM
    Mech Dev; 1999 Jun; 84(1-2):41-53. PubMed ID: 10473119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish.
    Durbin L; Sordino P; Barrios A; Gering M; Thisse C; Thisse B; Brennan C; Green A; Wilson S; Holder N
    Development; 2000 Apr; 127(8):1703-13. PubMed ID: 10725246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons.
    Wu Y; Wang G; Scott SA; Capecchi MR
    Development; 2008 Jan; 135(1):171-82. PubMed ID: 18065432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of calbindin-D28k immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E
    Eur J Neurosci; 1993 Jul; 5(7):782-94. PubMed ID: 8281290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish.
    Neave B; Holder N; Patient R
    Mech Dev; 1997 Mar; 62(2):183-95. PubMed ID: 9152010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.