BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11493551)

  • 1. Fruit development is actively restricted in the absence of fertilization in Arabidopsis.
    Vivian-Smith A; Luo M; Chaudhury A; Koltunow A
    Development; 2001 Jun; 128(12):2321-31. PubMed ID: 11493551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis.
    Goetz M; Vivian-Smith A; Johnson SD; Koltunow AM
    Plant Cell; 2006 Aug; 18(8):1873-86. PubMed ID: 16829592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato.
    Goetz M; Hooper LC; Johnson SD; Rodrigues JC; Vivian-Smith A; Koltunow AM
    Plant Physiol; 2007 Oct; 145(2):351-66. PubMed ID: 17766399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis.
    Vivian-Smith A; Koltunow AM
    Plant Physiol; 1999 Oct; 121(2):437-51. PubMed ID: 10517835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene.
    Tiwari A; Vivian-Smith A; Voorrips RE; Habets ME; Xue LB; Offringa R; Heuvelink EP
    BMC Plant Biol; 2011 Oct; 11():143. PubMed ID: 22018057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.
    Gu Q; Ferrándiz C; Yanofsky MF; Martienssen R
    Development; 1998 Apr; 125(8):1509-17. PubMed ID: 9502732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and characterization of novel parthenocarpy QTLs in tomato.
    Gorguet B; Eggink PM; Ocaña J; Tiwari A; Schipper D; Finkers R; Visser RG; van Heusden AW
    Theor Appl Genet; 2008 Apr; 116(6):755-67. PubMed ID: 18231773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic insight into fruit set of cucumber (Cucumis sativus L.) suggests the cues of hormone-independent parthenocarpy.
    Li J; Xu J; Guo QW; Wu Z; Zhang T; Zhang KJ; Cheng CY; Zhu PY; Lou QF; Chen JF
    BMC Genomics; 2017 Nov; 18(1):896. PubMed ID: 29166853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.).
    Pomares-Viciana T; Del Río-Celestino M; Román B; Die J; Pico B; Gómez P
    BMC Plant Biol; 2019 Feb; 19(1):61. PubMed ID: 30727959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development.
    Müller BM; Saedler H; Zachgo S
    Plant J; 2001 Oct; 28(2):169-79. PubMed ID: 11722760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of AtGRDP1 gene expression affects silique and seed development in Arabidopsis thaliana.
    Rodríguez-Hernández AA; Muro-Medina CV; Ramírez-Alonso JI; Jiménez-Bremont JF
    Biochem Biophys Res Commun; 2017 Apr; 486(2):252-256. PubMed ID: 28285133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atemoya fruit development and cytological aspects of GA
    Dos Santos RC; Nietsche S; Pereira MCT; Ribeiro LM; Mercadante-Simões MO; Carneiro Dos Santos BH
    Protoplasma; 2019 Sep; 256(5):1345-1360. PubMed ID: 31065805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.
    Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR
    Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth dynamics of the
    Ripoll JJ; Zhu M; Brocke S; Hon CT; Yanofsky MF; Boudaoud A; Roeder AHK
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25333-25342. PubMed ID: 31757847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.).
    Li J; Wu Z; Cui L; Zhang T; Guo Q; Xu J; Jia L; Lou Q; Huang S; Li Z; Chen J
    Plant Cell Physiol; 2014 Jul; 55(7):1325-42. PubMed ID: 24733865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii].
    Huang J; Tu DP; Ma XJ; Mo CM; Pan LM; Bai LH; Feng SX
    Zhongguo Zhong Yao Za Zhi; 2015 Sep; 40(18):3567-72. PubMed ID: 26983201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina).
    Mesejo C; Yuste R; Martínez-Fuentes A; Reig C; Iglesias DJ; Primo-Millo E; Agustí M
    Physiol Plant; 2013 May; 148(1):87-96. PubMed ID: 23002897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seedless fruit production by hormonal regulation of fruit set.
    Pandolfini T
    Nutrients; 2009 Feb; 1(2):168-77. PubMed ID: 22253976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin and ethylene regulation of fruit set.
    An J; Althiab Almasaud R; Bouzayen M; Zouine M; Chervin C
    Plant Sci; 2020 Mar; 292():110381. PubMed ID: 32005386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.
    Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW
    Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.