These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11495010)

  • 1. Cross-linked hemoglobin as a potential membrane for an artificial red blood cell.
    Fallon AG; Schnaare RL
    Artif Cells Blood Substit Immobil Biotechnol; 2001 Jul; 29(4):285-96. PubMed ID: 11495010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of a crosslinked carboxyhemoglobin membrane at an organic-aqueous interface.
    Eisman JM; Schnaare RL
    Artif Cells Blood Substit Immobil Biotechnol; 1996 May; 24(3):185-96. PubMed ID: 8773738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoglobin-albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes.
    Scurtu F; Zolog O; Iacob B; Silaghi-Dumitrescu R
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):13-7. PubMed ID: 23342991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuccinimidyl suberate cross-linked hemoglobin as a novel red blood cell substitute.
    Lu X; Zheng C; Xu Y; Su Z
    Sci China C Life Sci; 2005 Feb; 48(1):49-60. PubMed ID: 15844357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of modified diaspirin cross-linked hemoglobin (DCLHb) with 1,6-bismaleimic-hexane.
    Qi D; Wang P; Chen C; Guo S; Wang X
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1069-74. PubMed ID: 26838092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Inside-Out" PEGylation of Bovine β-Cross-Linked Hemoglobin.
    Webster KD; Dahhan D; Otto AM; Frosti CL; Dean WL; Chaires JB; Olsen KW
    Artif Organs; 2017 Apr; 41(4):351-358. PubMed ID: 28321886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cross-linking reagent for bovine hemoglobin modification.
    He M; Lu X; Zhao D; Su Z
    Biotechnol Lett; 2003 Feb; 25(4):327-30. PubMed ID: 12882546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified hemoglobin-based blood substitutes: crosslinked, recombinant and encapsulated hemoglobin.
    Chang TM
    Vox Sang; 1998; 74 Suppl 2():233-41. PubMed ID: 9704450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low modulus biomimetic microgel particles with high loading of hemoglobin.
    Chen K; Merkel TJ; Pandya A; Napier ME; Luft JC; Daniel W; Sheiko S; DeSimone JM
    Biomacromolecules; 2012 Sep; 13(9):2748-59. PubMed ID: 22852860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of rates of heme exchange: site-specifically cross-linked versus polymerized human hemoglobins.
    Vandegriff KD; Le Tellier YC
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):443-55. PubMed ID: 7994367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linking hemoglobin by design: lessons from using molecular clamps.
    Kluger R; Jones RT; Shih DT
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):415-28. PubMed ID: 7994365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilities and properties of multilinked hemoglobins.
    Olsen KW; Zhang QY; Huang H; Sabaliauskas GK; Yang T
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):283-5. PubMed ID: 1391443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of methemoglobin formation during the storage of various hemoglobin solutions.
    Moore GL; Zegna A; Ledford ME; Huling JP; Fishman RM
    Artif Organs; 1992 Oct; 16(5):513-8. PubMed ID: 10078303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitated oxygen transport with modified and encapsulated hemoglobins across non-flowing solution membrane.
    Nishide H; Chen XS; Tsuchida E
    Artif Cells Blood Substit Immobil Biotechnol; 1997 Jul; 25(4):335-46. PubMed ID: 9242929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide dismutase and catalase cross-linked to polyhemoglobin reduces methemoglobin formation in vitro.
    Quebec EA; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 1995; 23(6):693-705. PubMed ID: 8556142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular weight determinations of o-raffinose-polymerized human hemoglobin.
    Moore GL; Fishman RM; Ledford ME; Zegna A; Hsia JC; Song DL; Wong LT; Er SS
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):293-6. PubMed ID: 1391445
    [No Abstract]   [Full Text] [Related]  

  • 18. Future prospects for artificial blood.
    Chang TM
    Trends Biotechnol; 1999 Feb; 17(2):61-7. PubMed ID: 10087605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.
    Wang X; Huang L; Wang JF; Yang CM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(5):439-44. PubMed ID: 18821090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell substitutes: microencapsulated hemoglobin and cross-linked hemoglobin including pyridoxylated polyhemoglobin & conjugated hemoglobin.
    Chang TM
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):11-29. PubMed ID: 3052638
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.